

SCUOLA POLITECNICA E DELLE SCIENZE DI BASE

DIPARTIMENTO DI INGEGNERIA ELETTRICA E TECNOLOGIE DELL'INFORMAZIONE

CORSO DI LAUREA IN INFORMATICA

Classe delle Lauree in Scienze e Tecnologie Informatiche - L31

GUIDA DELLO STUDENTE

ANNO ACCADEMICO 2025/2026

Vers. 1.1

AGGIORNATA: 23/07/2025

1 Sommario

1	Sommario	2
2	Revisioni	5
3	Informazioni Generali sul Corso di Laurea Triennale in Informatica	6
4	Quadro Normativo degli Studi Universitari	7
	Come iscriversi	
	Test di ingresso	8
	Obiettivi formativi	9
	Condizione occupazionale dei laureati	10
5	Regolamento vigente	11
6	Percorso didattico	12
	Percorso didattico – Regolamento dal 2024/25	12
	Percorso didattico – Regolamento dal 2018/19 al 2023/24	12
7	Manifesto degli Studi del Corso di Laurea in Informatica	13
	Manifesto degli Studi (per studenti immatricolati dall'a.a. 2024/25)	14
	Manifesto degli Studi (per studenti immatricolati da a.a. 2018/19 a 2023/24)	16
8	Transizione dal precedente regolamento al nuovo regolamento	18
9	Piani di studio ed Esami a Libera Scelta	19
1(0 Tirocinio	20
	Riconoscimento di crediti per attività formative svolte esternamente al Corso di Studi (e.g. Academy)	
1	1 Esame finale e attribuzione del punteggio finale	22
1:		
	Calendario delle Attività didattiche per l'a.a. 2025/2026	24
	Orario delle lezioni	24
	Calendario degli Esami di profitto	24
	Calendario degli Esami di Laurea	24
1;	3 Suddivisione in canali	25
14		
	Coordinatore Didattico dei Corsi di Studio in Informatica	
	Referenti per le attività di tirocinio	26
	Referente del Corso di Studi per il Programma ERASMUS+:	26

Re	eferente Orientamento	26
Re	esponsabile dei Contenuti del Sito Web	26
Re	eferente Pratiche Studenti	26
Ra	appresentanti degli Studenti	26
15	Vademecum Studenti DIETI	_26
16	Contatti e Strutture	_28
17	Schede degli insegnamenti	_29
Sc	chede degli Insegnamenti – Manifesto a.a. 2025-2026	30
	Primo Anno	30
	Programmazione (ATTIVATO DALL'A.A. 2024/2025)	
	Architettura degli Elaboratori	
	Analisi Matematica I	
	Programmazione Object-Oriented (ATTIVATO DALL'A.A. 2024/2025)	
	Basi di dati (ATTIVATO DALL'A.A. 2024/2025)	35
	Algebra (ATTIVATO DALL'A.A. 2024/2025)	
	Secondo Anno	37
	Analisi e progettazione di Algoritmi (ATTIVATO DALL'A.A. 2025/2026)	
	Analisi e progettazione di Strutture Dati (ATTIVATO DALL'A.A. 2025/2026)	38
	Elementi di Informatica Teorica	
	Fisica Generale I	
	Geometria	41
	Linguaggi di Programmazione	
	Metodi Statistici per l'informazione (ATTIVATO DALL'A.A. 2025/2026)	43
	Sistemi Operativi	44
	Terzo Anno	45
	Al Technologies (ATTIVATO DALL'A.A. 2026/2027)	
	Reti e Programmazione Distribuita (ATTIVATO DALL'A.A. 2026/2027)	46
	Tecniche di Programmazione Avanzata (ATTIVATO DALL'A.A. 2026/2027)	47
	Tecnologie Web (ATTIVATO DALL'A.A. 2026/2027)	48
	Ingegneria del Software (ATTIVATO DALL'A.A. 2026/2027)	49
	Esami a Scelta Libera	50
	Algorithm design	50
	Calcolo Numerico	51
	Diritto dell'Informatica	52
	Computer Forensics	54
	Economia e Organizzazione Aziendale	55
	Istituzioni di Matematica II	56
	Logics for computer science	57
	Operating systems for mobile, cloud and IoT	58
	Parallel and Distributed Computing TITOLO INSEGNAMENTO IN INGLESE Parallel and Distributed	
	Computing	59
	Operation Research	
	Scientific Computing	
	Multimedia Information Systems	62
9.	chede degli Insegnamenti – Manifesto ante 2024-2025	63

Primo Anno	63
Algebra (DISATTIVATO DALL'A.A. 2024/2025)	63
Analisi Matematica I	
Architettura degli Elaboratori	66
Fisica Generale I	67
Geometria	68
Laboratorio di Programmazione (DISATTIVATO DALL'A.A. 2024/2025)	69
Programmazione (DISATTIVATO DALL'A.A. 2024/2025)	70
Secondo Anno	71
Algoritmi e Strutture Dati I (DISATTIVATO DALL'A.A. 2025/2026)	
Basi di dati I (DISATTIVATO DALL'A.A. 2025/2026)	73
Elementi di Informatica Teorica	75
Laboratorio di Algoritmi e Strutture Dati (DISATTIVATO DALL'A.A. 2025/2026)	76
Linguaggi di Programmazione I (DISATTIVATO DALL'A.A. 2025/2026)	77
Object Orientation (DISATTIVATO DALL'A.A. 2025/2026)	
Sistemi Operativi I (DISATTIVATO DALL'A.A. 2025/2026)	79
Terzo Anno	81
Laboratorio di Sistemi Operativi (DISATTIVATO DALL'A.A. 2026/2027)	81
Calcolo delle Probabilità e Statistica (DISATTIVATO DALL'A.A. 2025/2026)	83
Ingegneria del Software Modulo A (DISATTIVATO DALL'A.A. 2026/2027)	85
Ingegneria del Software Modulo B (DISATTIVATO DALL'A.A. 2026/2027)	86
Reti di Calcolatori I (DISATTIVATO DALL'A.A. 2026/2027)	87
Esami a Scelta Vincolata (Tab. A)	89
Linguaggi di Programmazione II (DISATTIVATO DALL'A.A. 2026/2027)	89
Tecnologie Web (DISATTIVATO DALL'A.A. 2026/2027)	91
Esami a Scelta Libera (Tab. B)	
Algorithm design	93
Calcolo Numerico	95
Diritto dell'Informatica	96
Computer Forensics	
Economia e Organizzazione Aziendale	98
Istituzioni di Matematica II	
Logics for computer science	
Operating systems for mobile, cloud and IoT	101
Parallel and Distributed Computing	102
Ricerca Operativa	103
Scientific Computing	105
Multimedia Information Systems	106

2 Revisioni

Questo documento potrebbe subire modifiche volte a migliorarne l'organizzazione e/o a correggere eventuali refusi. Gli studenti sono invitati ad assicurarsi di consultare sempre l'ultima versione disponibile. La versione più aggiornata del documento è consultabile alla pagina dedicata sul sito web del Corso di Studi.

Data	Versione	Descrizione
22/07/2025	1.0	Prima versione della guida 2025/2026.
23/07/2025	1.1	Aggiornati i nomi dei rappresentati degli studenti; aggiunta indicazione relativa alla suddivisione in canali al terzo anno; aggiunti dettagli sul riconoscimento di attività lavorativa ai fini del tirocinio curricolare.

3 Informazioni Generali sul Corso di Laurea Triennale in Informatica

Il Corso di Laurea Triennale in Informatica (classe L-31) dell'Università di Napoli Federico II da oltre 25 anni forma la figura professionale dell'Informatico, e rappresenta il primo livello di un percorso formativo che prosegue con la Laurea Magistrale in Informatica.

Il corso di laurea è progettato per assicurare ai futuri laureati una solida cultura di base ed una padronanza di metodi e contenuti scientifico/tecnologi necessari per un rapido inserimento nel mondo del lavoro nel settore delle tecnologie dell'informazione.

Le competenze teoriche e metodologiche fornite dal corso di laurea sono pensate per permettere ai laureati di aggiornarsi indipendentemente nel corso della propria carriera (formazione permanente) in una disciplina, quale l'Informatica, soggetta a continua e costante evoluzione. I contenuti coprono altresì aspetti tecnologici, mantenuti costantemente aggiornati. Vengono insegnate metodologie e tecniche per lo sviluppo di software a livello industriale. Le conoscenze teoriche sono inoltre complementate da attività pratiche con esempi pratici durante le lezioni e realizzazione di elaborati progettuali. Di norma, il percorso formativo si conclude con un tirocinio presso una delle oltre 150 aziende con cui il corso di laurea mantiene contatti.

Il laureato in Informatica, previo superamento dell'Esame di Stato, può iscriversi all'Albo degli Ingegneri dell'Informazione, sez. B ottenendo quindi il titolo di *Ingegnere dell'Informazione Junior*.

I tipici sbocchi nel mondo del lavoro comprendono posizioni nei team di progettazione e sviluppo di software, e di gestione dei sistemi informatici, oltre alla libera professione. I contenuti del Corso di Laurea risultano in linea con le attuali esigenze del mondo produttivo. Ciò è confermato anche dalle indagini statistiche *AlmaLaurea*, che evidenziano la forte competitività del nostro Corso di Laurea, anche rispetto ai suoi omologhi di altre sedi, in termini di livelli occupazionali, attesa del primo impiego, percentuale di contratti a tempo indeterminato, livelli di retribuzione, soddisfazione degli studenti e utilità percepita.

I Corsi di Laurea e di Laurea Magistrale in Informatica sono inquadrati nel Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione (DIETI). Il DIETI ha ottenuto dal Ministero della Ricerca il riconoscimento di *Dipartimento di Eccellenza* per il quinquennio 2023/2027.

Per ulteriori dettagli far riferimento al sito web del corso di studi: http://informatica.dieti.unina.it/

4 Quadro Normativo degli Studi Universitari

L'attuale quadro normativo italiano sull'organizzazione degli studi universitari, in ottemperanza al modello europeo, prevede:

- Un titolo di studio di primo livello (denominato Laurea) della durata di 3 anni.
- Un titolo di studio di secondo livello (denominato Laurea Magistrale) della durata di 2 anni.

Coloro che conseguono la Laurea di primo livello possono proseguire gli studi ed ottenere, mediamente dopo altri due anni, il titolo di studio di secondo livello (Laurea Magistrale).

Un concetto rilevante è quello di **Credito Formativo Universitario (CFU)**, che rappresenta l'unità di misura del lavoro di apprendimento dello studente. Ad 1 CFU corrispondono mediamente 25 ore di lavoro di apprendimento che possono comprendere ore di: lezioni frontali, laboratorio, seminari, tirocinio e cultura di contesto, studio individuale, etc.

Per ogni esame superato lo studente acquisisce il numero di CFU assegnati al relativo insegnamento. Viene convenzionalmente previsto un lavoro di apprendimento annuale pari all'acquisizione di 60 CFU. Pertanto, la Laurea di primo livello viene conseguita dopo l'acquisizione di 180 CFU, mentre la Laurea Magistrale richiede l'acquisizione di ulteriori 120 CFU.

Come iscriversi

Il Corso di Laurea in Informatica è ad accesso libero, e non sono pertanto previste prove selettive per l'accesso. Tuttavia, come per tutti i Corsi di Laurea in Ingegneria dell'Università di Napoli Federico II, per l'immatricolazione al Corso di Laurea Triennale in Informatica è previsto un test di ingresso obbligatorio (**TOLC-I**) basato su un questionario a risposta multipla. Maggiori dettagli sul test TOLC-I sono riportati nella sezione seguente.

L'immatricolazione si effettua attraverso <u>SegrePass</u>, il sistema di Ateneo che permette di accedere ai servizi per gli studenti. L'immatricolazione e l'iscrizione agli anni successivi hanno luogo, di norma, dal 1 settembre al 31 ottobre di ogni anno, con modalità che sono rese note sul <u>sito web di Ateneo</u>. Per ulteriori informazioni è possibile consultare la <u>Guida alle Immatricolazioni e Test di Ingresso</u> disponibile sul sito web del corso di Studi in Informatica.

Test di ingresso

L'immatricolazione al Corso di Laurea in Informatica prevede un Test di autovalutazione obbligatorio. Le modalità di iscrizione al test sono quelle indicate nel <u>sito web</u> della Scuola Politecnica e delle Scienze di Base. In particolare, il documento che regola le modalità e il calendario dei test di ammissione si trova alla seguente <u>pagina</u> (Test di ammissione "on line" (**TOLC-I**) per Corsi di Studio in Ingegneria e in Scienze **non a numero programmato**).

Le modalità per prenotare il test per il Corso di Laurea in Informatica sono quelle dei **Corsi di Studio in Ingegneria e in Scienze non a numero programmato**.

È possibile l'iscrizione al corso di laurea anche senza aver fatto ancora il test di autovalutazione (si intende che lo studente dovrà affrontare il test nelle date previste successive all'immatricolazione).

La soglia di superamento è di **15/50 per la parte logico-matematica e di 15 per la conoscenza della lingua inglese**.

Il superamento della soglia di conoscenza della lingua inglese permette l'acquisizione automatica di 3 CFU per "Conoscenza della lingua inglese".

Si ricorda che il Corso di Studi in Informatica è a numero NON programmato e che dunque il mancato superamento del test non pregiudica l'iscrizione al corso di studio. In particolare, l'iscrizione può anche essere fatta prima di affrontare il test purché lo si affronti successivamente non oltre i mesi di settembre ed ottobre.

Il mancato superamento del Test comporta l'attribuzione di un **Obbligo Formativo Aggiuntivo (OFA)** di 3 CFU, che è estinto sostenendo con esito positivo, **prima di ogni altro esame**, un esame a scelta tra Analisi matematica I, Architettura degli Elaboratori, o Programmazione.

Le conoscenze richieste per il corso di laurea in Informatica comprendono i principi basilari delle Scienze Matematiche:

- 1. si richiede che l'allievo possieda le conoscenze di aritmetica, algebra, insiemistica e logica, geometria, calcolo e trigonometria conseguite nel triennio finale della scuola secondaria;
- 2. si richiedono inoltre le conoscenze elementari della lingua inglese relativamente ai principi della traduzione e comprensione di testi scritti semplici.

Inoltre, sono richieste le seguenti capacità:

- capacità di interpretare il significato di un testo e di sintetizzarlo o di rielaborarlo in forma scritta e orale;
- abilità di comprendere e rispondere a quesiti attenendosi strettamente agli elementi forniti;
- capacità di individuare i dati di un problema pratico e di utilizzarli per pervenire alla risoluzione nella maniera più rapida;
- capacità di utilizzare le strutture logiche elementari (ad esempio, il significato di implicazione, equivalenza, negazione di una frase, ecc.) in un discorso scritto e orale.

Non sono richieste conoscenze pregresse di informatica.

Obiettivi formativi

I laureati del corso di laurea in Informatica avranno conoscenze nei vari settori delle scienze e tecnologie dell'informazione, sia mirate all'uso e alla gestione consapevole di sistemi informatici, sia mirate alla loro utilizzazione nella progettazione e sviluppo di sistemi informatici. A tale scopo il laureato dovrà acquisire un'adeguata conoscenza dei settori di base dell'informatica nonché dei lineamenti fondamentali e degli strumenti di supporto della matematica. Pertanto, in accordo con le linee guida delle associazioni nazionali (GRIN) ed internazionali (ACM) del settore, il percorso didattico, prevede:

- L'acquisizione di nozioni di base di fisica e di matematica sia discreta sia del continuo;
- La conoscenza dei principi, dei modelli teorici e delle architetture dei sistemi di elaborazione e delle reti di comunicazione;
- La conoscenza e l'utilizzazione dei sistemi operativi;
- L'acquisizione di elementi di analisi e progettazione degli algoritmi e delle strutture dati;
- L'acquisizione delle moderne metodologie di programmazione nonché la conoscenza dei linguaggi di programmazione rappresentativi dei principali paradigmi di programmazione;
- L'assimilazione dei principi per la progettazione e le dei sistemi per la gestione delle basi di dati e le tecnologie correlate;
- L'acquisizione delle tecniche di progettazione e realizzazione di sistemi informatici.
- L'acquisizione di conoscenze in settori affini anche a carattere interdisciplinare.
- Lo svolgimento di tirocini formativi presso aziende, enti di ricerca, e strutture della pubblica amministrazione o attività progettuali sostitutive.

Si prevede anche l'incentivazione di soggiorni di studio presso università straniere, nel quadro di accordi internazionali.

Conoscenza e comprensione

La formazione di base fornisce al laureato triennale in Informatica la conoscenza e la comprensione dei principi e dei linguaggi di base del metodo scientifico e del settore informatico.

Più specificamente, i risultati del processo di apprendimento permettono di conoscere e comprendere il linguaggio tecnico e scientifico, i modelli, i problemi, le tecniche e gli aspetti tecnologici nei seguenti settori:

- architetture dei sistemi di elaborazione e delle reti di comunicazione;
- sistemi operativi;

- algoritmi e strutture dati;
- metodologie di programmazione e linguaggi di programmazione;
- sistemi per la gestione delle basi di dati;
- ingegneria del software.

Dei settori elencati il laureato è in grado di leggere la documentazione (monografie e manualistica) relativa agli aspetti consolidati dello stato dell'arte, e di mantenersi aggiornato.

I risultati vengono conseguiti negli insegnamenti obbligatori delle discipline matematiche, fisiche e informatiche impartiti per circa 160 CFU complessivi, e mediante la trasmissione personalizzata di conoscenze tramite i corsi a scelta e lo svolgimento dello stage o tirocinio per 15 CFU.

I risultati vengono verificati nelle prove individuali di esame associate agli insegnamenti e nella valutazione dell'attività di stage o tirocinio. I risultati vengono conseguiti principalmente mediante le lezioni frontali e le esercitazioni, nonché mediante le ampie attività di carattere pratico/laboratoriale previste per i principali settori dell'attività formativa caratterizzante (Programmazione, Programmazione Object-Oriented, Analisi e Progettazione di Strutture Dati) e, più in generale, nelle attività di progettazione ed esercitazioni di gruppo svolte nell'ambito dei principali insegnamenti caratterizzanti. Ulteriori competenze specifiche vengono acquisite durante l'attività di tirocinio finale.

I risultati vengono verificati nelle prove di esame (scritte e/o orali) associate agli insegnamenti, nella valutazione degli elaborati eventualmente prodotti per le attività di progettazione ed esercitazione, e nella valutazione del tirocinio e della prova finale connessa.

Capacità di applicare conoscenza e comprensione

- I risultati del processo di apprendimento comportano l'acquisizione delle seguenti competenze di carattere sia generale che professionale:
- essere in grado di gestire, amministrare e progettare sistemi informatici anche complessi;
- competenze riguardanti l'acquisizione e la formalizzazione dei requisiti del problema tramite interazione con i committenti;
- avere capacità di affrontare e analizzare problemi e di sviluppare sistemi informatici per la loro soluzione;

Condizione occupazionale dei laureati

La condizione occupazionale dei laureati è rilevata attraverso le indagini indipendenti di *AlmaLaurea*¹, che indicano che la Laurea Triennale in Informatica dell'Università degli Studi di Napoli Federico II **garantisce un ottimo livello occupazionale**, superiore alla media nazionale relativa ai CdL della stessa classe. Per i laureati considerati nella più recedente **Indagine 2022**, il tasso di disoccupazione def. Istat è dello **0**%. Il tempo medio che intercorre tra la laurea e il primo lavoro è di soli 1,8 mesi. La percezione dell'efficacia della laurea nel lavoro svolto nell'indagine per i laureati del 2022 è positiva per circa il **91**% degli intervistati. La **retribuzione media** è superiore alla media nazionale (1.499€ mensili per i laureati in Informatica dell'Ateneo Federico II, a fronte di 1.426€ nella media nazionale).

¹ I dati delle indagini sono consultabili pubblicamente su sito <u>www.almalaurea.it</u>

5 Regolamento vigente

A partire dall'anno accademico 2024/2025, il Corso di Laurea Triennale in Informatica ha adottato una variazione di regolamento che ne ha aggiornato sia la struttura che i contenuti. Questo aggiornamento è stato implementato con l'obiettivo di migliorare l'offerta formativa, adattandola alle esigenze del mercato del lavoro e alle innovazioni tecnologiche.

È importante che ciascuno studente faccia riferimento al regolamento in vigore nell'anno della propria immatricolazione. Pertanto:

- Gli studenti immatricolati dall'anno accademico 2024/2025 seguono il nuovo regolamento attualmente vigente.
- Gli studenti immatricolati negli anni accademici precedenti seguono il piano di studi articolato secondo il regolamento vigente nell'anno della loro immatricolazione.

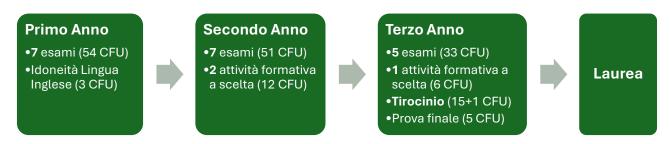
I regolamenti del Corso di Studi sono disponibili all'indirizzo:

https://informatica.dieti.unina.it/index.php/it/laurea-triennale/regolamento-laurea-triennale

Questa guida è organizzata per fornire a tutti gli studenti le informazioni necessarie per comprendere il proprio percorso di studi. Per garantire chiarezza e facilità di consultazione, la guida include sezioni apposite dedicate ai piani di studi e alle schede degli insegnamenti per gli ultimi due regolamenti in vigore. Ove non diversamente specificato, le informazioni riportate in questa guida valgono indipendentemente da regolamento vigente al momento dell'immatricolazione.

6 Percorso didattico

Il percorso didattico per il conseguimento della Laurea Triennale in Informatica è articolato in tre anni.


Percorso didattico – Regolamento dal 2024/25

Per gli studenti immatricolati dall'a.a. 2024/2025, il percorso didattico previsto è riportato nella figura seguente.

Percorso didattico – Regolamento dal 2018/19 al 2023/24

Per gli studenti immatricolati negli anni accademici dal 2023/2024 al 2018/2019, il percorso didattico previsto è riportato nella figura seguente.

Per gli studenti immatricolati in anni accademici antecedenti il 2018/2019, si rimanda ai regolamenti specifici, consultabili sul <u>sito web del Corso di Studi</u>.

7 Manifesto degli Studi del Corso di Laurea in Informatica

In ogni anno accademico viene approvato il *Manifesto degli Studi*, che formalmente struttura l'offerta formativa per gli studenti che si immatricolano in quell'anno accademico. Il Manifesto degli Studi definisce obbligatorietà, propedeuticità, e attivazioni degli insegnamenti facoltativi. In tutta la sua carriera, lo studente deve fare riferimento al Manifesto degli Studi dell'anno della sua immatricolazione.

Nelle sezioni seguenti è riportato il Manifesto degli Studi approvato dall'a.a. 2024/2025 (riferimento per gli immatricolati nell'a.a. 2025/26) e per gli anni precedenti.

- Manifesto degli Studi (per studenti immatricolati dall'a.a. 2024/2025)
- Manifesto degli Studi (per studenti immatricolati dall'a.a. 2018/19 a 2023/24)

Ciascuno studente deve fare riferimento al Manifesto degli Studi in vigore nell'anno in cui si è immatricolato. Gli studenti immatricolati in anni accademici antecedenti il 2018/19, possono consultare il manifesto degli studi nella guida dello studente dell'anno di immatricolazione.

Manifesto degli Studi (per studenti immatricolati dall'a.a. 2024/25)

Insegnamento o attività formativa	Semestre*	CFU	SSD	Propedeuticità
lanno				
Analisi Matematica I	1	9	MATH-03/A	
Architettura degli Elaboratori	1	9	INFO-01/A	
Programmazione	1	12	INFO-01/A	
Inglese	1	3		
Algebra	2	6	MATH-02/A	
Programmazione Object-Oriented	2	9	INFO-01/A	
Basi di Dati	2	9	INFO-01/A	
II anno				
Analisi e Progettazione di Strutture Dati	Da definire	9	INFO-01/A	<u>Programmazione</u>
<u>Fisica Generale I</u>	Da definire	6	PHYS-01/A	
Elementi di Informatica Teorica	Da definire	6	INFO-01/A	
Sistemi Operativi	Da definire	9	INFO-01/A	Architettura degli elaboratori
Geometria	Da definire	6	MATH-02/B	
Analisi e Progettazione di Algoritmi	Da definire	6	INFO-01/A	Analisi Matematica I
7. Tradior of Togottaziono arragonami	Da dominio		1111 0 01//1	<u>Programmazione</u>
Linguaggi di Programmazione	Da definire	6	INFO-01/A	<u>Programmazione</u> <u>Programmazione Object-Oriented</u>
Metodi Statistici per l'Informazione	Da definire	6	IINF-03/A	Analisi Matematica I
Esami a libera scelta (vedi Tab. B)		12		
III anno				
Reti e programmazione distribuita	Da definire	9	INFO-01/A	<u>Algebra</u>
Ingegneria del Software	Da definire	9	INFO-01/A	Programmazione Object-Oriented
ingegneria det oortware	Da dellillie	3	1141 O-017A	Algebra
Tanaisha di Duaguanananiana Assaulta	D. d.fi	_	INIEO 04 /A	Programmazione Object-Oriented
Tecniche di Programmazione Avanzata	Da definire	6	INFO-01/A	<u>Linguaggi di Programmazione</u> <u>Algebra</u>
Esame a scelta da Tab. A		6	INFO-01/A	Algebra
Tecnologie Web				Programmazione Object-Oriented
	Da definire	9	INFO-01/A	Algebra
Al Technologies	Da definire	6	INFO-01/A	<u>Algebra</u>
Tirocinio		13		
Altre attività di orientamento		1		
Prova finale		4		

^{*} La semestralizzazione per gli esami del secondo e terzo anno (che saranno attivati, rispettivamente, negli anni accademici 2025/2026 e 2026/2027) sarà definita successivamente.

Esami a libera scelta coerenti con gli obiettivi formativi del Corso di Studi (i cui CFU sono pienamente riconosciuti senza previa delibera della Commissione di Coordinamento Didattico)

Gli esami a scelta libera saranno attivati per gli studenti immatricolati nell'a.a. 2024/25 soltanto a partire dall'anno accademico 2025/26. I semestri in cui gli insegnamenti a scelta si svolgono potrebbero subire variazioni.

Insegnamenti a scelta libera	SSD	C F U	Semestre	Propedeuticità
Algorithm design	INFO-01/A	6	2	Analisi e Progettazione di Strutture Dati Analisi e Progettazione di Algoritmi
Istituzioni di matematica II	MATH-03/A	6	1	Analisi matematica I
Calcolo numerico	MATH-05/A	6	2	
Parallel and distributed computing	INFO-01/A	6	1	
Scientific computing	MATH-05/A	6	1	
Computer Forensics	INFO-01/A	6	2	
Diritto dell'Informatica	GIUR-17/A	6	2	
Economia ed organizzazione aziendale	IEGE-01/A	6	2	
Logics for computer science	INFO-01/A	6	2	
Operation Research	MATH-06/A	6	1	Analisi e Progettazione di Strutture Dati
Multimedia Information Systems	INFO-01/A	6	2	
Operating systems for mobile, cloud and IoT	INFO-01/A	6	2	Sistemi Operativi

Manifesto degli Studi (per studenti immatricolati da a.a. 2018/19 a 2023/24)

Di seguito viene riportato l'ultimo *Manifesto degli Studi approvato nell'anno accademico 2017-18 per il corso di studi nella struttura precedente la revisione*. **Tale manifesto si applica a coloro che si sono immatricolati in anni accademici compresi tra l'a.a. 2018/19 e l'a.a. 2023/24.**

Insegnamento o attività formativa	Modulo	Semestre	CFU	SSD	Propedeuticità
I anno				<u> </u>	
Analisi matematica I		1	9	MAT/05	
Algebra		1	9	MAT/02	
<u>Programmazione</u>		1	9	INF/01	
Inglese		1	3		
Laboratorio di programmazione		2	6	INF/01	
Architettura degli elaboratori		2	9	INF/01	
Geometria		2	6	MAT/03	
<u>Fisica generale l</u>		2	6	FIS/01	
II anno					
Algoritmi e strutture dati <u>I</u>		1	9	INF/01	Analisi matematica I <u>Programmazione</u>
Object orientation		1	6	INF/01	<u>Programmazione</u>
<u>Basi di dati I</u>		1	9	INF/01	<u>Programmazione</u>
Sistemi operativi I		2	9	INF/01	<u>Architettura degli elaboratori</u>
<u>Laboratorio di algoritmi e</u> <u>strutture dati</u>		2	6	INF/01	<u>Programmazione</u> <u>Laboratorio di programmazione</u>
Elementi di informatica teorica		1	6	INF/01	
<u>Linguaggi di</u> <u>Programmazione I</u>		2	6	INF/01	<u>Programmazione</u> <u>Laboratorio di programmazione</u>
Esami a libera scelta (vedi Tab. B)			12		
III anno					
<u>Laboratorio di Sistemi</u> <u>Operativi</u>		1	8	INF/01	<u>Sistemi operativi I</u> <u>Algebra</u>
Ingegneria del Software	Α	1	5	INF/01	Object orientation Algebra
Ingegneria del Software	В	1	5	INF/01	Object orientation Algebra
Esame a scelta da Tab. A			6	INF/01	
Reti di calcolatori I		1	6	INF/01	<u>Sistemi operativi I</u> <u>Algebra</u>
Calcolo delle probabilità e statistica		2	9	MAT/06	Analisi matematica I Algebra
Tirocinio finale			15		
Tirocini ed altre attività di orientamento			1		
Prova finale			5		

Materie a scelta Tabella A	SSD	CFU	Semestre	Propedeuticità
Linguaggi di programmazione II	INF/01	6	2	Algebra Linguaggi di programmazione I Object Orientation
<u>Tecnologie web</u>	INF/01	6	2	Algebra Linguaggi di programmazione I Object Orientation

Esami a libera scelta coerenti con gli obiettivi formativi del Corso di Studi (i cui CFU sono pienamente riconosciuti senza previa delibera della Commissione di Coordinamento Didattico)

Materie a scelta Tabella B	SSD	CFU	Semestre	Propedeuticità
Algorithm design	INF/01	6	2	Algoritmi e Strutture Dati I Laboratorio di Algoritmi e Strutture Dati
Istituzioni di matematica II	MAT/05	6	1	Analisi matematica I
Calcolo numerico	MAT/08	6	2	
Parallel and distributed computing	INF/01	6	1	
Scientific computing	MAT/08	6	1	
Computer Forensics	INF/01	6	2	
Diritto dell'Informatica	IUS/20	6	2	
Economia ed organizzazione aziendale	ING-IND/35	6	2	
Linguaggi di programmazione II	INF/01	6	2	Object orientation Linguaggi di programmazione I Algebra
Logics for computer science	M-FIL/02	6	2	
Operation Research	MAT/09	6	1	Algoritmi e strutture dati I
Multimedia Information Systems	INF/01	6	2	
Operating systems for mobile, cloud and IoT	INF/01	6	2	<u>Sistemi Operativi I</u>
Tecnologie web	INF/01	6	2	Object orientation Linguaggi di programmazione I Algebra

8 Transizione dal precedente regolamento al nuovo regolamento

Per l'anno accademico 2024/2025, saranno attivati gli insegnamenti del primo anno del nuovo regolamento in vigore dall'a.a. 2024/2025. Gli insegnamenti del secondo saranno attivati dal 2025/26 e quelli del terzo anno dal 2026/27.

Pertanto, per il secondo e terzo anno, nel 2024/25 saranno erogati esclusivamente gli insegnamenti del vecchio regolamento.

Il passaggio dal precedente al nuovo regolamento nell'erogazione della didattica avverrà quindi in modo graduale:

- ➤ a.a. 2024/2025: Attivazione degli insegnamenti del primo anno secondo il nuovo regolamento (e.g.: Algebra da 6 CFU, Programmazione da 12 CFU, Programmazione Object-oriented e Basi di Dati), e disattivazione degli insegnamenti del primo anno secondo il regolamento precedente (e.g.: Algebra da 9 CFU, Programmazione da 9 CFU, Laboratorio di Programmazione).
- ➤ a.a. 2025/2026: Attivazione degli insegnamenti del secondo anno secondo il nuovo regolamento, tra cui Analisi e Progettazione di Strutture Dati e Analisi e Progettazione di Algoritmi, e disattivazione degli insegnamenti del secondo anno secondo il vecchio regolamento (e.g.: Algoritmi e Strutture Dati I, Laboratorio di Algoritmi e Strutture Dati).
- ➤ a.a. 2026/2027: Attivazione degli insegnamenti del terzo anno secondo il nuovo regolamento, tra cui "Al Technologies", Tecnologie Web da 9 CFU, Tecniche di Programmazione Avanzata, Ingegneria del Software da 9 CFU e Reti e Programmazione Distribuita. Disattivazione degli insegnamenti del terzo anno secondo il precedente regolamento (e.g.: Ingegneria del Software da 10 CFU, Tecnologie Web da 6 CFU, Linguaggi di Programmazione II, Reti di Calcolatori, Laboratorio di Sistemi Operativi).

In ogni caso, gli studenti immatricolati con il regolamento precedente potranno continuare a sostenere gli esami presenti nel loro piano di studi seguendo i programmi in vigore al momento della loro immatricolazione, anche quando gli insegnamenti saranno disattivati. Per gli insegnamenti disattivati, non si terranno più lezioni frontali.

9 Piani di studio ed Esami a Libera Scelta

I crediti legati agli esami a libera scelta possono essere conseguiti scegliendo liberamente tra tutti gli insegnamenti attivati presso l'Ateneo che siano coerenti con il percorso formativo della Laurea Triennale in Informatica.

- > Se tali crediti sono conseguiti attingendo esclusivamente alla lista di esami attivati per il Corso di Laurea in Informatica (**Tabella B** del Manifesto degli Studi), lo studente **NON** è tenuto a presentare un piano di studi preventivo, e può sostenere direttamente gli esami a scelta libera.
- > Se lo studente intende conseguire, anche solo parzialmente, tali CFU con insegnamenti erogati dall'Ateneo ma non attivati per il Corso di Laurea in Informatica (i.e., non presenti in Tabella B), allora è necessario presentare un piano di studi al Coordinatore del Corso di Studi entro il 31 ottobre 2025 (inviando una e-mail al coordinatore del corso di studi con indicazione della scelta).

In assenza di presentazione del piano di studi, la coerenza degli esami sostenuti dallo studente è valutata dalla Segreteria Didattica al momento della registrazione degli esami stessi. Pertanto, è nella responsabilità dello studente una scelta coerente degli insegnamenti a scelta libera. Scelte non coerenti non permettono la registrazione degli esami connessi eventualmente sostenuti.

Lo studente è tenuto a rispettare strettamente le propedeuticità degli esami indicate nel manifesto degli studi. L'esame sostenuto per un insegnamento non potrà essere registrato in mancanza degli insegnamenti ad esso propedeutici.

Nella composizione dei crediti a libera scelta lo studente può scegliere senza vincoli tra insegnamenti del primo e del secondo semestre (due insegnamenti del primo semestre, oppure due insegnamenti del secondo semestre, oppure un insegnamento del primo ed uno del secondo).

10 Tirocinio

Il Corso di Studi Triennale in Informatica prevede, nell'Articolo 17 del Regolamento Didattico, lo svolgimento di un tirocinio curriculare, o attività equivalente, connesso al completamento della preparazione culturale degli studenti.

Le attività di Tirocinio sono disciplinate dal Regolamento (Decreto interministeriale n.142 del 25/03/98) recante le norme di attuazione dei principi e dei criteri di cui all'art.18 della legge 24 giugno 1997, n.196 (cd. legge Treu), sui tirocini formativi e di orientamento. Il Tirocinio rappresenta un momento di alternanza tra studio e lavoro che si svolge nell'ambito dei processi formativi, con lo scopo di agevolare le scelte professionali dello studente, favorendone la conoscenza diretta del mondo del lavoro.

Il tirocinio ha, dunque, per lo studente una duplice valenza:

- **formativa**, perché mira ad approfondire ed ampliare le conoscenze acquisite durante il percorso di studi;
- orientativa, perché fornisce l'opportunità di una conoscenza diretta della realtà professionale.

Il tirocinio non è un rapporto di lavoro e non dà alcun diritto di natura economica al tirocinante. L'Università si fa carico degli oneri assicurativi per gli infortuni, per le malattie professionali, per la responsabilità civile nonché delle comunicazioni obbligatorie alle Organizzazioni sindacali e agli Uffici preposti ai controlli in materia di lavoro, purché il tirocinio si tenga sul territorio europeo. In caso di tirocini svolti al di fuori del territorio europeo, sarà l'azienda a farsi carico dell'assicurazione.

Il tirocinio si può svolgere presso un **Soggetto Ospitante** (azienda, ente pubblico o privato, e istituzione di ricerca, ...) **convenzionato** con l'Università degli Studi di Napoli Federico II (tirocinio *extra moenia* o esterno), oppure presso l'Università degli Studi di Napoli Federico II (tirocinio *intra moenia* o interno). In entrambi i casi, è necessario che l'addestramento conseguente sia rivolto a una maturazione del candidato, sia culturale che professionale.

È fortemente consigliato che il tirocinio venga svolto presso aziende esterne, o già convenzionate o previa stipula di convenzione con l'Università degli Studi di Napoli "Federico II". Il tirocinio esterno si configura, infatti, a pieno titolo come "esperienza lavorativa pregressa in azienda" per fini curriculari. Gli studenti possono svolgere il tirocinio anche presso istituzioni di ricerca come CNR, INFN, INFM, Osservatorio Astronomico ed altri, oppure scegliere di lavorare su un progetto proposto da un gruppo di ricerca o da un docente universitario, purché l'addestramento conseguente sia rivolto al fine di una maturazione scientifica e professionale.

In ogni caso, l'impegno richiesto per portare a termine il tirocinio è determinato dal numero di crediti corrispondente nel piano di studi dello studente. Per ogni credito formativo è previsto un impegno nelle attività di tirocinio pari a 25 ore. Per gli studenti immatricolati dall'a.a. 2024/2025, il piano di studi prevede **13 CFU** di tirocinio, corrispondenti a un impegno di 13 x 25 = **325 ore**. Per gli studenti immatricolati in anni accademici precedenti, il tirocinio piano di studi prevede un tirocinio da 15 CFU, corrispondente a $15 \times 25 = 375$ ore.

Le modalità di svolgimento del tirocinio curricolare, inclusi i requisiti per l'avvio del tirocinio e l'iter burocratico da seguire, sono disciplinati dalla Commissione per il Coordinamento Didattico del Corso di Studi in Informatica nell'apposito Regolamento Tirocini.

Informazioni dettagliate sui tirocini e sull'iter per l'assegnazione di un tirocinio sono disponibili sul sito web del Corso di Studio, alle pagine riportate di seguito:

- ➤ Il **Regolamento Tirocini** è consultabile sul sito web del Corso di Studi, al seguente indirizzo: https://informatica.dieti.unina.it/index.php/it/servizi-per-gli-studenti/tirocini/regolamento-tirocini
- L'Iter Burocratico da seguire e i requisiti per richiedere l'assegnazione del tirocinio sono disponibili nella pagina web dedicata sul sito del Corso di Studi, all'indirizzo: https://informatica.dieti.unina.it/index.php/it/servizi-per-gli-studenti/tirocini/iter-burocratico
- ➤ Un elenco (parziale) di aziende con offerte per tirocini esterni è disponibile sul sito web del Corso di Studi, all'indirizzo: https://informatica.dieti.unina.it/index.php/it/servizi-per-gli-studenti/tirocini/aziende-con-offerte-per-tirocini

Riconoscimento di crediti per attività formative svolte esternamente al Corso di Studi (e.g.: Academy)

Come indicato nel Regolamento Tirocini (Art. 10), cui si rimanda per ulteriori dettagli, gli studenti che abbiano completato percorsi in Academy organizzate dall'Università degli Studi di Napoli Federico II su tematiche attinenti insegnamenti caratterizzanti del Corso di Studi possono richiedere il riconoscimento di al più **3 CFU** di Tirocinio.

I restanti crediti di Tirocinio andranno acquisiti con un tirocinio intra moenia o extra moenia, secondo le procedure descritte nel Regolamento Tirocini.

Lo studente può sottoporre la domanda per tale riconoscimento alla Commissione Tirocini, allegando adeguata documentazione (e.g.: attestato di completamento del percorso in Academy). L'elenco delle Academy per cui è previsto il riconoscimento automatico dei crediti è stabilito con provvedimento della CCD e pubblicato sul sito web del Corso di Studi in Informatica. Nel caso di completamento di più di una Academy, vengono riconosciuti comunque al massimo 3 CFU complessivamente.

Per richiedere un eventuale riconoscimento di crediti per altre attività equiparabili a tirocinio curricolare non incluse tra quelle con automatico riconoscimento, lo studente sottopone al Coordinatore del Corso di Studi adeguata documentazione sulle attività formative e professionali svolte.

Riconoscimento di crediti per attività lavorativa

Come indicato nel Regolamento Tirocini (Art. 10-bis), cui si rimanda per ulteriori dettagli, gli studenti che abbiano recentemente svolto un'attività lavorativa su tematiche attinenti agli insegnamenti caratterizzanti del Corso di Studi e agli obiettivi formativi del tirocinio possono richiedere il riconoscimento dei CFU previsti per il tirocinio curriculare, secondo le modalità dettagliate nel Regolamento Tirocini.

Per ulteriori dettagli, si rimanda al Regolamento Tirocini e all'Iter Burocratico per tirocini dettagliato sul sito web del Corso di Studi.

11 Esame finale e attribuzione del punteggio finale

L'esame finale di laurea consiste nella redazione di un **elaborato di tesi**, tipicamente sviluppato a partire dall'esperienza del tirocinio (interno o esterno), e nella presentazione dello stesso alla Commissione di Laurea.

L'elaborato di tesi è un documento redatto dal candidato sotto la guida del Relatore assegnato dalla Commissione Tirocini, che per prassi coincide con il Tutor Accademico che ha seguito il tirocinio. Non sono previsti formati specifici per gli elaborati di tesi.

La presentazione dell'elaborato di tesi ha una durata massima di 10 minuti. Durante la presentazione, gli studenti possono avvalersi di supporti audio-visivi (e.g.: presentazione realizzata con Microsoft PowerPoint o strumenti simili). Al termine della presentazione, i membri della Commissione di Laurea possono porre domande ai candidati sul lavoro svolto.

Al termine dell'esame viene attribuito un punteggio complessivo ottenuto dalla somma dei seguenti addendi:

- 1. Il voto medio degli esami del candidato, espresso in centodecimi;
- 2. I punteggio espresso dalla Commissione di Laurea in seguito alla prova del candidato, compreso tra 1 e 6 punti;
- 3. Il punteggio di **incentivazione per la velocità**, compreso tra 0 e 5 punti, definito come segue:
 - a. **5 punti**, se il candidato si laurea entro la fine del terzo anno accademico dalla sua immatricolazione.
 - b. **2 punti**, se il candidato si laurea entro la fine del quarto anno accademico dalla sua immatricolazione.
 - c. 0 punti, altrimenti.
- 4. Il punteggio di **incentivazione per la media**, compreso tra 0 e 4 punti, definito come segue:
 - a. Se il voto medio in centodecimi X degli esami del candidato è uguale o superiore a 81, il punteggio di incentivazione si calcola secondo la seguente formula: X*3/22-11;
 - c. 0 punti, altrimenti.

Qualora il voto medio degli esami del candidato, espresso in trentesimi, sia maggiore o uguale di 28 e la valutazione finale sia massima (110/110), la Commissione di Laurea può concedere la lode, con decisione unanime.

La richiesta di lode va comunicata dal relatore alla Commissione di Laurea almeno una settimana prima della data dell'esame finale, ove si ritenga che il candidato ne possegga i requisiti.

Programma Erasmus+

Erasmus+ è il programma di mobilità voluto e finanziato dall'Unione Europea che consente anche agli studenti universitari di trascorrere un periodo di studio presso una Università straniera convenzionata, con un contributo finanziario UE e con la possibilità di seguire corsi, sostenere esami e di usufruire delle strutture disponibili senza pagare a questa le tasse di iscrizione.

L'attività didattica (esami, tirocini) svolta in Erasmus+ viene poi riconosciuta, sia in termini di crediti che di voti, dall'Università di appartenenza.

Informazioni più dettagliate possono essere recuperate nel sito del Corso di Studi all'indirizzo:

https://informatica.dieti.unina.it/index.php/it/servizi-per-gli-studenti/erasmus

Il <u>referente del Programma Erasmus+</u> del Corso di Studi è il Prof. Luigi Sauro.

12 Calendario Attività Didattiche, Orario delle Lezioni e Calendario Esami

Questa sezione riporta dettagli sul calendario delle attività didattiche, sull'orario delle lezioni e sul calendario degli esami e delle sedute di laurea.

Calendario delle Attività didattiche per l'a.a. 2025/2026

Il calendario delle attività didattiche è stabilito dalla Scuola Politecnica e delle Scienze di Base ed è consultabile alla pagina dedicata sul sito web della Scuola.

Per l'a.a. 2025/2026, le lezioni del primo periodo didattico (primo semestre) si terranno orientativamente dal 15 settembre al 19 dicembre 2025. Le lezioni del secondo periodo didattico (secondo semestre) si terranno orientativamente dal 2 marzo al 12 giugno 2026.

Le date precise saranno pubblicate non appena disponibili.

Nei periodi di esami, sono garantiti cinque appelli ordinari e due appelli di recupero (come definiti nel Regolamento Didattico di Ateneo), definiti come segue:

- Appelli ordinari obbligatori: un appello nel mese di gennaio 2026, un appello nel mese di febbraio 2026, un appello nel mese di giugno 2026, un appello nel mese di luglio 2026 ed un appello nel mese di settembre 2026.
- Appelli di recupero obbligatori: un appello nel mese di marzo 2026, un appello nel periodo ottobre-novembre 2026.
 - o Le date precise saranno pubblicate non appena disponibili.

Orario delle lezioni

L'orario delle lezioni è consultabile on-line all'indirizzo:

https://informatica.dieti.unina.it/index.php/it/servizi-per-gli-studenti/orario-delle-lezioni/orario-laurea-triennale

Calendario degli Esami di profitto

Il calendario degli esami di profitto è consultabile on-line all'indirizzo:

https://informatica.dieti.unina.it/index.php/it/servizi-per-gli-studenti/calendarioesami/calendario-esami-laurea-triennale

Calendario degli Esami di Laurea

Il calendario degli Esami di Laurea è disponibile sul sito web della Scuola Politecnica e delle Scienze di Base, al seguente indirizzo:

http://www.scuolapsb.unina.it/index.php/laurea-ingegneria

Le Commissioni degli Esami di Laurea e l'elenco dei candidati sono consultabili on-line all'indirizzo:

https://informatica.dieti.unina.it/index.php/it/servizi-per-gli-studenti/calendario-esami-dilaurea/laurea-triennale

13 Suddivisione in canali

Nell'anno accademico 2025/26 i corsi della laurea triennale sono suddivisi in base al cognome in canali secondo la seguente modalità:

Primo Anno (lezioni a Monte Sant'Angelo)

- > Canale 1: Cognomi lettere A-DE
- > Canale 2: Cognomi lettere DF-M
- > Canale 3: Cognomi lettere N-Z

Secondo Anno (lezioni a Monte Sant'Angelo)

- > Canale 1: Cognomi lettere A-G
- Canale 2: Cognomi lettere H-Z

Terzo Anno (lezioni a via Claudio e Piazzale Tecchio/Monte Sant'Angelo)

- > Canale 1: Cognomi lettere A-G
- > Canale 2: Cognomi lettere H-Z

Si sottolinea che gli studenti non possono in alcun modo cambiare il proprio canale di appartenenza, e sono vincolati a sostenere l'esame con il docente del proprio canale.

14 Referenti del Corso di Studi

In questa pagina sono riportati i nomi e i riferimenti del coordinatore del Corso di Studi in Informatica e dei docenti referenti per diversi aspetti specifici. In calce, sono riportati anche i nomi e gli indirizzi e-mail dei rappresentanti degli studenti per il Corso di Studi Triennale.

Coordinatore Didattico dei Corsi di Studio in Informatica

Prof. Sergio Di Martino - tel. 081/679272 - e-mail: cds.informatica@unina.it

Referenti per le attività di tirocinio

- Prof. Massimo Benerecetti massimo.bennerecetti@unina.it
- Prof. Alessandro De Luca alessandro.deluca@unina.it.
- Prof. Fabio Mogavero <u>fabio.mogavero@unina.it</u>.

Referente del Corso di Studi per il Programma ERASMUS+:

Prof. Luigi Sauro – <u>luigi.sauro@unina.it</u>.

Referente Orientamento

Prof. Daniel Riccio – daniel.riccio@unina.it

Responsabile dei Contenuti del Sito Web

> Prof. Luigi Libero Lucio Starace – <u>luigiliberolucio.starace@unina.it</u>

Referente Pratiche Studenti

Prof.ssa Mara Sangiovanni – mara.sangiovanni@unina.it

Rappresentanti degli Studenti

I nomi e gli indirizzi email dei rappresentanti degli studenti sono riportati di seguito e elencati nella pagina apposita sul sito web del Corso di Studi.

- Di Tota Gaetano g.ditota@studenti.unina.it
- Sorrentino Myriam my.sorrentino@studenti.unina.it
- Palmieri Emanuele Gerardo <u>emanu.palmieri@studenti.unina.it</u>
- Tibello Francesco <u>f.tibello@studenti.unina.it</u>
- Anepeta Alessio <u>a.anepeta@studenti.unina.it</u>
- Ciotola Emanuele emanu.ciotola@studenti.unina.it

15 Vademecum Studenti DIETI

Il Dipartimento di Ingegneria Elettrica e Tecnologie dell'Informazione, cui il Corso di Studi in Informatica afferisce, ha redatto un Vademecum per gli studenti, per orientarsi nelle strutture e nei servizi erogati. Il documento è reperibile al seguente indirizzo:

https://www.dieti.unina.it/index.php/it/studenti/vademecum-dello-studente-menu

16 Contatti e Strutture

I corsi del primo e secondo anno sono erogati nel plesso di <u>Monte Sant'Angelo, Via Vicinale Cupa Cintia, 26, 80126 Napoli NA</u>.

I corsi del terzo anno sono erogati nel plesso di Via Claudio, 21, 80125 Napoli NA.

Siti web utili:

- Sito web del Corso di Studio: https://informatica.dieti.unina.it/
- Sito web del Dipartimento: https://dieti.unina.it
- Sito web della Scuola: http://www.scuolapsb.unina.it
- Sito web di Ateneo: www.unina.it
- Portale Orientamento: www.orientamento.unina.it

Canali Social ufficiali:

- Instagram: https://www.instagram.com/unina.informatica/
- LinkedIn: https://www.linkedin.com/company/informatica-federico-ii/
- Facebook: https://www.facebook.com/InformaticaUnina/
- Canale Telegram Ufficiale: https://t.me/informatica_unina

17 Schede degli insegnamenti

In questa sezione sono riportate le Schede degli Insegnamenti attivati per il Regolamento in vigore dall'a.a. 2024/2025 e per il regolamento precedente.

Le Schede degli Insegnamenti riportano, per ciascun insegnamento, docenti titolari della cattedra (eventualmente per i diversi canali), obiettivi formativi, contenuti del corso, eventuali propedeuticità, modalità d'esame e materiale didattico. Per ulteriori dettagli, gli studenti possono consultare le schede degli insegnamenti inserite da tutti i docenti sulla piattaforma https://www.docenti.unina.it e le schede degli insegnamenti riportate nell'Allegato 2.1 del Regolamento Didattico del Corso di Studi.

Schede degli Insegnamenti – Manifesto a.a. 2025-2026

Primo Anno

Programmazione (ATTIVATO DALL'A.A. 2024/2025)

TITOLO INSEGNAMENTO IN INGLESE Computer Programming

SSD	INFO-01/A
CFU	12
Anno	Primo
Semestre	Primo
Propedeuticità	Nessuna
Docenti	Canale 1: Roberto Prevete; Canale 2: Daniel Riccio/Luigi Sauro; Canale 3: Francesco Isgrò.

OBIETTIVI FORMATIVI

L'obiettivo del Corso è quello di presentare il paradigma della programmazione imperativa utilizzando iterazione e ricorsione e, partendo da semplici esercizi, mettere in grado gli studenti di scrivere algoritmi non troppo complessi. Il corso ha anche lo scopo di fornire le competenze pratiche per sviluppare programmi e le prime strutture dati in linguaggio C. Gli studenti saranno in grado di utilizzare ambienti di sviluppo a riga di comando e IDE.

CONTENUTI

Introduzione al concetto di algoritmo. Rappresentazione di dati e istruzioni. Progettazione top down di un algoritmo e sua implementazione. I costrutti di controllo: sequenza, iterazione e selezione. Le functions e l'astrazione procedurale. Passaggio di parametri. Concetto di ADT. ADT Array e Stringhe. Algoritmi di ricerca di elemento in array. Algoritmi di ricerca di elemento in array ordinati (binary search). Algoritmi di calcolo matriciale. Algoritmi di ordinamento. ADT record. I tipi di dati derivati. La ricorsione. Utilità e potenza della ricorsione in alcuni casi significativi. Puntatori e variabili dinamiche. Allocazione dinamica della memoria. ADT linked list; stack; queue e principali algoritmi per la loro gestione. Introduzione al linguaggio C. La documentazione del software

Esercizi

- Esercizi di programmazione per ogni argomento del corso
- Progetti di programmazione di complessità crescente

Laboratorio:

- Introduzione a bash, al compilatore gcc e all'editor testuale nano.
- Riepilogo delle istruzioni di controllo e indentazione di un programma C.
- Scrivere programmi sintatticamente corretti: Errori tipici di sintassi; come interpretare i messaggi di errore del compilatore; buone pratiche per evitare errori di sintassi e per commentare un programma.
- Il ciclo di sviluppo di un programma: design dell'algoritmo, design della sessione di testing, implementazione, debugging. Esempi di sviluppo di un programma C.
- Esprimere condizioni complesse mediante espressioni booleane. Pattern condizionali su array: esistenziale, universale, minimo, massimo.
- Tecniche di sviluppo un po' più avanzate: interpretare i warning di gcc; utilizzo del debugger gdb; compilazione modulare.
- Analisi delle prestazioni di algoritmo, caso di studio con algoritmi di ordinamento. Opzioni di compilazione di gcc per aumentare le prestazioni.

- Funzioni di I/O, stringhe, operazioni su file. Ordinamento lessicografico di stringhe.
- Realizzazione di una libreria di funzioni ricorsive per la manipolazione di liste.

MODALITÀ DIDATTICHE

Lezioni frontali e esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta libera, esercizi numerici, sviluppo di piccoli progetti/esercizi, algoritmi e software.

Architettura degli Elaboratori

TITOLO INSEGNAMENTO IN INGLESE Computer Architecture

SSD	INFO-01/A
CFU	9
Anno	Primo
Semestre	Primo
Propedeuticità	Nessuna
Docenti	Canale 1: Luigi Sauro; Canale 2: Silvia Rossi; Canale 3: da definire.

OBIETTIVI FORMATIVI

Conoscere e applicare le principali codifiche digitali dei dati. Saper interpretare e manipolare espressioni dell'algebra di Boole. Saper tradurre un'espressione booleana in circuito combinatorio e viceversa. Saper minimizzare espressioni booleane. Conoscere le macchine di Moore e Mealy. Conoscere la struttura dei principali circuiti logico-aritmetici e delle ALU. Conoscere l'architettura dei microprocessori basati sul paradigma ARM. Saper realizzare programmi in linguaggio assembly di un processore ARM. Conoscere le principali architetture di memoria, incluse le memorie cache e la memoria virtuale.

CONTENUTI

Rappresentazioni digitale dei dati. Operazioni aritmetiche e overflow. Algebra di Boole, funzioni booleane, circuiti combinatori e porte logiche. Minimizzazione di funzioni booleane. Multiplexer e decoder. Elementi di timing. Circuiti sequenziali elementari: latch e flip-flop. Macchine di Mealy e Moore: analisi e sintesi. Circuiti addizionatori e ALU. Architettura ARM: elementi hardware, formato istruzione, architettura interna. Programmazione in assembly ARM. Connessioni con i costrutti del linguaggio C. Introduzione alle memorie cache. Analisi delle prestazioni di sistemi con cache. Introduzione al concetto di memoria virtuale. Traduzione degli indirizzi. Architetture a ciclo singolo, a ciclo multiplo e basate su pipeline.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta multipla e/o a risposta libera.

Analisi Matematica I

TITOLO INSEGNAMENTO IN INGLESE Calculus I

SSD	MATH-03/A
CFU	9
Anno	Primo
Semestre	Primo
Propedeuticità	Nessuna
Docenti	Canale 1: Roberto Alicandro; Canale 2: Daniele Castorina; Canale 3: Anna Maria Barbagallo.

OBIETTIVI FORMATIVI

Il corso si prefigge lo scopo di introdurre gli studenti ai problemi di approssimazione di una funzione regolare mediante serie di potenze, al calcolo differenziale ed integrale per le funzioni di più variabili ed al concetto di modello matematico con particolare attenzione alle equazioni differenziali lineari.

CONTENUTI

Cenni di Teoria degli insiemi. Insiemi numerici: i numeri naturali; i numeri interi; il principio di induzione; i numeri razionali; i numeri reali; funzioni reali di una variabile reale e loro rappresentazione cartesiana; funzioni invertibili e funzione monotone; le funzioni elementari. Estremi inferiore e superiore di insiemi e funzioni. Successioni e loro limiti. Limiti di funzione e funzioni continue. Funzioni continue in un intervallo. Derivate. Massimi e minimi. Criteri di monotonia. Funzioni convesse e concave. Formula di Taylor ed applicazioni. Metodo di Newton. Integrale di Riemann: definizione e proprietà principali. Integrabilità delle funzioni continue. Integrali indefiniti. Teorema fondamentale del calcolo integrale. Formula fondamentale del calcolo integrale. Serie numeriche.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta libera e/o esercizi numerici.

Programmazione Object-Oriented (ATTIVATO DALL'A.A. 2024/2025)

TITOLO INSEGNAMENTO IN INGLESE Object-Oriented Programming

SSD	INFO-01/A
CFU	9
Anno	Primo
Semestre	Secondo
Propedeuticità	Nessuna
Docenti	Canale 1: Sergio Di Martino/Mara Sangiovanni; Canale 2: Porfirio Tramontana; Canale 3: Bernardo Breve/Riccardo Caccavale.

OBIETTIVI FORMATIVI

Acquisizione delle competenze di base per la progettazione object-oriented attraverso la comprensione dei concetti di astrazione sui dati, di incapsulamento dell'informazione, di coesione e accoppiamento, e di riutilizzo del codice; comprensione delle differenze tra paradigma object-oriented e il paradigma procedurale, conoscenza del linguaggio java per la definizione di classi e per la promozione del riutilizzo del software capacità di applicare conoscenza e comprensione delle principali abilita (ossia la capacita di applicare le conoscenze acquisite) saranno: analisi di problemi, specifica dei requisiti e definizione di una strategia risolutiva con un approccio orientato agli oggetti, con la sua implementazione nel linguaggio Java, garantendo il giusto equilibrio tra qualità ed efficienza del software. Il corso fornisce anche linee guida e best practice di sviluppo, gestione ed organizzazione del codice sorgente per migliorarne la manutenibilità, la riutilizzabilità e l'efficienza.

CONTENUTI

La programmazione orientata agli oggetti; concetti di astrazione dei dati e di incapsulamento; Progettazione di classi. Concetti di coesione e accoppiamento; Ereditarietà e riuso; Interfacce, classi astratte e polimorfismo; UML: Class Diagrams e Sequence Diagrams; Introduzione a Java, alla JVM e al JDK; Oggetti, variabili, riferimenti; classi e metodi, costruttori, comunicazione fra oggetti, parametri espliciti e impliciti; il riferimento this; Tipi di dati fondamentali. Classi Object e String; Meccanismi di 'autoboxing' e 'unboxing'; Accenni di gestione delle Eccezioni; Le collezioni in Java: List e sue implementazioni. For generico (for each); Design pattern: Iterator, Observer, Strategy, Composite; Programmazione di interfacce grafiche ad eventi. Le Swing.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

L'esame si articola in prova: Scritta e realizzazione di un elaborato progettuale.

Per la prova scritta, i quesiti sono a risposta libera, esercizi numerici.

Basi di dati (ATTIVATO DALL'A.A. 2024/2025)

TITOLO INSEGNAMENTO IN INGLESE Data Bases

SSD	INFO-01/A
CFU	9
Anno	Primo
Semestre	Secondo
Propedeuticità	Nessuna
Docenti	Canale 1: Mara Sangiovanni; Canale 2: Silvio Barra; Canale 3: Andrea Calì.

OBIETTIVI FORMATIVI

Obiettivo del corso è l'acquisizione delle metodologie per la progettazione e l'implementazione di una base di dati e la predisposizione della sua interfaccia con utenti e/o programmi applicativi. In particolare, lo studente acquisirà le metodologie per strutturare e documentare il progetto; acquisirà gli elementi per la comprensione della struttura, delle funzionalità e degli aspetti tecnologici dei sistemi per la gestione di basi di dati (DBMS) con particolare riferimento a quelli che adottano un modello relazionale dei dati. Lo studente acquisirà conoscenza dei linguaggi standard di interrogazione e manipolazione dei dati per il modello relazionale dei dati.

CONTENUTI

Introduzione alla Gestione dei Dati. Dati e sistemi informativi. Gestione con file vs gestione con DBMS. Architettura e funzionalità di un DBMS. Modellazione Concettuale. Modello Entità-Relazione (ER). Diagrammi UML per la rappresentazione dei dati. Progettazione concettuale. Ristrutturazione del modello concettuale. Algebra Relazionale. Operatori fondamentali e derivati. Esecuzione di interrogazioni tramite algebra relazionale. Confronto con SQL. Progettazione Logica e Fisica. Mapping concettuale-logico. Progettazione logica e normalizzazione. Progettazione fisica: indici, organizzazione dei file. SQL: Linguaggio per Basi di Dati. DDL (Data Definition Language). DML (Data Manipulation Language). SDL (Storage and access paths). Query con join, aggregazioni, sottoquery e viste. Integrità dei Dati. Vincoli di chiave, dominio, referenziali. Assertion e trigger. PL/SQL. Strutture di controllo, variabili e tipi. Procedure, funzioni e pacchetti. Gestione delle eccezioni. SQL Dinamico. Costruzione ed esecuzione dinamica di comandi SQL. Applicazioni tipiche in contesti multiutente o interattivi.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

L'esame si articola in prova: Scritta e realizzazione di un elaborato progettuale.

Per la prova scritta, i quesiti sono a risposta libera, esercizi numerici.

Algebra (ATTIVATO DALL'A.A. 2024/2025)

TITOLO INSEGNAMENTO IN INGLESE Algebra

SSD	MATH-02/A
CFU	6
Anno	Primo
Semestre	Secondo
Propedeuticità	Nessuna
Docenti	Canale 1: Maria Rosaria Celentani; Canale 2: Giovanni Cutolo; Canale 3: Mattia Brescia.

OBIETTIVI FORMATIVI

Obiettivo del corso è quello di fornire allo studente la capacità di utilizzare correttamente il linguaggio insiemistico, migliorare la sua capacità di astrazione e quella di riconoscere strutture matematiche, focalizzando l'attenzione sulle principali strutture algebriche e su quelle della matematica discreta che hanno applicazioni in informatica. Lo studente acquisirà, in particolare, familiarità con l'aritmetica modulare e saprà riconoscere e descrivere in dettaglio relazioni di equivalenza, ordinamenti e reticoli, strutture booleane incluse.

CONTENUTI

Logica intuitiva, introduzione elementare al calcolo dei predicati. Linguaggio della teoria degli insiemi, applicazioni e confronto tra insiemi. Calcolo combinatorio, fattoriali, coefficienti binomiali. Relazioni binarie: equivalenze e partizioni; ordinamenti, buon ordinamento dei numeri naturali e principio di induzione. Operazioni e strutture algebriche. Semigruppi, monoidi, gruppi, anelli, campi. Parti stabili, sottostrutture. Omomorfismi e strutture quoziente. Reticoli, algebre di Boole, anelli booleani. Reticoli come particolari insiemi ordinati e come strutture algebriche. Sottoreticoli, isomorfismi. Connessioni tra reticoli, algebre e anelli di Boole. Aritmetica. L'anello Z degli interi, il teorema fondamentale dell'aritmetica, l'algoritmo euclideo delle divisioni successive. Congruenze in Z, gli anelli delle classi di resto, aritmetica modulare. Equazioni congruenziali lineari.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

La prova scritta prevede sia risposta multipla che risposta libera.

Secondo Anno

Analisi e progettazione di Algoritmi (ATTIVATO DALL'A.A. 2025/2026)

TITOLO INSEGNAMENTO IN INGLESE Algorithm Analysis and Design

SSD	INFO-01/A
CFU	6
Anno	Secondo
Semestre	Secondo
Propedeuticità	Analisi matematica I, Programmazione
Docenti	Canale 1: Massimo Benerecetti; Canale 2: Fabio Mogavero.

OBIETTIVI FORMATIVI

Il corso intende fornire un'introduzione alle tecniche di analisi del tempo di esecuzione degli algoritmi. Verranno presentate inoltre tecniche di progettazione di algoritmi, quali divide-et-impera, algoritmi greedy, programmazione dinamica, algoritmi approssimati con applicazioni alla soluzione di problemi di ottimizzazione. Infine, si forniranno cenni di complessità computazionale e trattabilità dei problemi.

CONTENUTI

Il corso fornisce gli strumenti fondamentali per l'analisi e la progettazione di algoritmi, con particolare attenzione alla loro correttezza e complessità sia temporale sia di memoria. Vengono introdotti i concetti di base della notazione asintotica e le tecniche per il calcolo del tempo di esecuzione di algoritmi iterativi e ricorsivi, inclusa la risoluzione di equazioni di ricorrenza. Particolare attenzione viene riservata all'analisi della complessità dei principali algoritmi di ordinamento (insertion sort, selection sort, merge sort, heap sort, quick sort). Si affronta il problema della correttezza degli algoritmi, con riferimento alle dimostrazioni per induzione e alla verifica della correttezza di algoritmi ricorsivi. Il corso esplora le principali tecniche di progettazione algoritmica: divide et impera, backtracking, programmazione dinamica e approcci greedy. Gli algoritmi di programmazione dinamica e greedy sono trattati attraverso applicazioni a problemi di ottimizzazione, con lo scopo di evidenziare criteri di scelta e limiti di ciascun approccio.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

L'esame si articola in prova: Scritta e orale

In caso di prova scritta i quesiti sono: A risposta libera

Analisi e progettazione di Strutture Dati (ATTIVATO DALL'A.A. 2025/2026)

TITOLO INSEGNAMENTO IN INGLESE Analysis and Design of Data Structures

SSD	INFO-01/A
CFU	9
Anno	Secondo
Semestre	Primo
Propedeuticità	Programmazione
Docenti	Canale 1: Massimo Benerecetti; Canale 2: Fabio Mogavero.

OBIETTIVI FORMATIVI

Il corso si propone di fornire le conoscenze di base per l'analisi e la progettazione di strutture dati efficienti. In particolare, verranno illustrate le tecniche di base per la valutazione dell'efficienza spaziale e temporale. Tali concetti verranno illustrati a livello teorico e metodologico e applicati, a titolo esemplificativo, all'analisi di strutture dati elementari (tra cui liste, alberi e grafi) e strutture dati avanzate (come, ad esempio, code a priorità, tabelle hash e alberi bilanciati). Ulteriore obiettivo è quello di familiarizzare lo studente con la progettazione e l'implementazione di strutture dati in un linguaggio di programmazione procedurale o a oggetti.

CONTENUTI

Il corso affronta lo studio delle principali strutture dati, con attenzione sia agli aspetti teorici sia a quelli progettuali e implementativi. Si inizierà con l'analisi delle strutture dati elementari, quali array e liste, sia ordinati sia non ordinati, oltre a stack, code, heap, code a priorità e alberi binari, includendo le operazioni fondamentali e le modalità di visita. Verranno poi trattate strutture più complesse, come gli alberi binari di ricerca, sia nella versione base sia in quelle bilanciate (AVL e alberi Rosso-Neri), approfondendo gli algoritmi di inserimento, cancellazione e ricerca. Una parte del corso è dedicata alle tabelle ad accesso diretto, con particolare attenzione alle tabelle hash. Seguirà lo studio dei grafi, con un focus sulle principali tecniche di rappresentazione e sugli algoritmi di attraversamento (BFS e DFS). Le visite sui grafi verranno analizzate anche nelle loro applicazioni pratiche, tra cui la ricerca di cammini minimi in grafi non pesati, la verifica dell'aciclicità, gli ordinamenti topologici e l'individuazione delle componenti fortemente connesse. Durante il corso sarà posta particolare attenzione alla progettazione e implementazione di tipi di dati astratti e di librerie di strutture dati modulari, che favoriscano l'indipendenza tra interfaccia e rappresentazione concreta dei dati.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

L'esame si articola in prova: Scritta e orale

In caso di prova scritta i quesiti sono: A risposta libera

Elementi di Informatica Teorica

TITOLO INSEGNAMENTO IN INGLESE Introduction to Theoretical Computer Science

SSD	INFO-01/A
CFU	6
Anno	Secondo
Semestre	Primo
Propedeuticità	Nessuna
Docenti	Canale 1: Alessandro De Luca; Canale 2: Alessandro De Luca.

OBIETTIVI FORMATIVI

Introdurre lo studente a nozioni e risultati teorici di base soggiacenti all'informatica. Lo studente potrà impadronirsi di concetti fondamentali dell'Informatica teorica e dei relativi modelli astratti di calcolo, apprezzandone l'utilità sia per un inquadramento generale del curriculum in Informatica sia per lo sviluppo delle sue capacità professionali.

CONTENUTI

Automi finiti e macchine sequenziali. Automi non deterministici. Linguaggi regolari. Espressioni regolari. Pumping lemma per i linguaggi regolari. Grammatiche e linguaggi indipendenti dal contesto. Forme normali di Chomsky. Automi a pila e non determinismo. Corrispondenza tra automi e grammatiche. Pumping lemma per i linguaggi indipendenti dal contesto. La gerarchia di Chomsky. I concetti di algoritmo, funzione calcolabile e parzialmente calcolabile. Funzioni primitive ricorsive. La minimalizzazione. Funzioni parziali ricorsive. Numerazioni di Goedel. Macchina universale. Tesi di Church - Turing. Problemi di decisione e di enumerazione. Indecidibilità. Insiemi ricorsivi e ricorsivamente numerabili. Macchina di Turing e indecidibilità, Complessità computazionale: nozioni di base.

MODALITÀ DIDATTICHE

Lezioni frontali ad argomento teorico ed esercitazioni per la soluzione di esercizi e problemi elementari di informatica teorica.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta libera e/o esercizi numerici.

Fisica Generale I

TITOLO INSEGNAMENTO IN INGLESE General Physics I

SSD	PHYS-01/A
CFU	6
Anno	Secondo
Semestre	Primo
Propedeuticità	Nessuna
Docenti	Canale 1: Goffredo Chirco; Canale 2: Giampiero Esposito.

OBIETTIVI FORMATIVI

Il contenuto del corso di Fisica è stato concepito con lo scopo di fornire allo studente del corso di laurea in Informatica strumenti di analisi e di sintesi basati sul metodo sperimentale e sui principi fondamentali delle scienze fisiche per poter rappresentare e modellare i fenomeni fisici col metodo scientifico. Le metodologie acquisite potranno risultare utili al futuro laureato in Informatica.

CONTENUTI

- 1. Elementi di Meccanica ed Applicazioni: Introduzione al metodo scientifico. Cinematica del punto materiale. Principi di dinamica del punto materiale. Energia e lavoro. Dinamica dei sistemi. Corpo rigido. Gravitazione.
- 2. Elementi di Termodinamica: Sistemi termodinamici. Primo principio della termodinamica. Il secondo principio della termodinamica.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta multipla, a risposta libera, e/o esercizi numerici.

Geometria

TITOLO INSEGNAMENTO IN INGLESE Geometry

SSD	MATH-02/B
CFU	6
Anno	Secondo
Semestre	Secondo
Propedeuticità	Nessuna
Docenti	Canale 1: Francesca Cioffi; Canale 2: Marco Trombetti.

OBIETTIVI FORMATIVI

Si dovranno acquisire gli strumenti di base dell'algebra lineare e della geometria. L'obiettivo di questo insegnamento è, da un lato, quello di abituare lo studente ad affrontare problemi formali, utilizzando strumenti adeguati ed un linguaggio corretto, e dall'altro di risolvere problemi specifici di tipo algebrico e geometrico, con gli strumenti classici dell'algebra lineare.

CONTENUTI

Conoscenza di base della teoria degli spazi vettoriali su un campo, con particolare riguardo al caso degli spazi reali di dimensione finita. Conoscenza di base del calcolo matriciale e dei legami tra matrici e trasformazioni lineari. Teoria dei sistemi lineari. Calcolo degli autovalori e degli autovettori di un operatore lineare e problema della diagonalizzazione. Piano e spazio tridimensionale euclidei, riferimenti e coordinate cartesiani e uso del linguaggio e dei metodi dell'algebra lineare per la risoluzione di problemi geometrici. Isometrie e movimenti del piano e dello spazio.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta multipla, a risposta libera, e/o esercizi numerici.

Linguaggi di Programmazione

TITOLO INSEGNAMENTO IN INGLESE Programming Languages

SSD	INFO-01/A
CFU	6
Anno	Secondo
Semestre	Secondo
Propedeuticità	Programmazione, Programmazione Object-Oriented
Docenti	Canale 1: Piero Andrea Bonatti; Canale 2: Marco Faella.

OBIETTIVI FORMATIVI

Fornire gli elementi tecnici per classificare i numerosissimi linguaggi di programmazione esistenti, rispetto a paradigma di computazione, caratteristiche del sistema di tipi, modalità di gestione della memoria, controllo di flusso e supporto del parallelismo. Cominciare a rendere gli studenti "utenti intelligenti" dei linguaggi di programmazione, cioè capaci di scegliere il paradigma più adatto al contesto applicativo dato, di sfruttare efficacemente le funzionalità offerte dai linguaggi e di apprendere rapidamente nuovi linguaggi. Il corso fornisce un trattamento approfondito del core di Java ed elementi di linguaggi funzionali e logici.

CONTENUTI

Introduzione ai linguaggi di programmazione. Cenni storici. Richiami degli elementi informatica teorica rilevanti per il corso. Cenni ai paradigmi di programmazione. Compilazione e interpretazione dei linguaggi. Supporto a runtime e gestione della memoria. Modalità di passaggio dei parametri. Strutturazione dei dati e controllo dei tipi. Tipi elementari e user defined. Encapsulation: tipi di dato astratti, moduli, classi. Sistemi di tipo nei linguaggi ad oggetti: sottotipi ed ereditarietà; compatibilità tra tipi. Java: Costrutti di controllo e sistema di tipi in dettaglio. Tipi parametrici (programmazione generica). Strutturazione della computazione: gestione delle eccezioni. Gestione della memoria in Java (inclusi costruttori, stringhe, garbage collection e gestione dell'ambiente non locale in presenza di classi interne). Parallelismo in Java. Costrutti funzionali di base, con esempi in ML e/o in Python.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta multipla e/o a risposta libera.

Metodi Statistici per l'informazione (ATTIVATO DALL'A.A. 2025/2026)

TITOLO INSEGNAMENTO IN INGLESE Statistical Methods for Computer Science

SSD	IINF-03/A
CFU	6
Anno	Secondo
Semestre	Secondo
Propedeuticità	Analisi Matematica I
Docenti	Canale 1: Marco Lops; Canale 2: Mario Tanda.

OBIETTIVI FORMATIVI

Obiettivo dell'insegnamento è fornire gli strumenti metodologici ed operativi per l'uso di metodi probabilistici e statistici nell'elaborazione dei dati e nel trattamento dell'informazione, e segnatamente con il concetto di variabili e vettori aleatori – discreti o continui – e con la loro caratterizzazione statistica.

CONTENUTI

Elementi di analisi combinatoria. Definizione di probabilità (frequentistica/assiomatica) e caratterizzazione di variabili discrete. Medie e momenti di variabili discrete. Teorema fondamentale della media. Estensione a variabili continue. Variabili aleatorie multiple (vettori aleatori) e loro caratterizzazione. Casi notevoli: vettori aleatori Gaussiani. Informazione e sua misura. Compressione senza perdite. Statistica inferenziale o descrittiva. Modelli dei dati e loro rilevanza. Regole di decisione. Stima Bayesiana e non. Stima a minimo errore quadratico medio (MMSE) e stima Least Mean Square (LMS): algoritmo del gradiente e sue varianti. Estensione ai processi aleatori (cenni).

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono esercizi numerici.

Sistemi Operativi

TITOLO INSEGNAMENTO IN INGLESE Operating System

SSD	INFO-01/A
CFU	9
Anno	Secondo
Semestre	Primo
Propedeuticità	Architettura degli Elaboratori
Docenti	Canale 1: Alberto Finzi; Canale 2: Walter Balzano.

OBIETTIVI FORMATIVI

Il corso intende fornire una introduzione alla struttura e alle funzioni dei moderni Sistemi Operativi esaminandone i principi, le componenti fondamentali, le metodologie di progettazione e di sviluppo, gli algoritmi e gli strumenti di base. Particolari riferimenti riguardano il Sistema Operativo Unix ed implementazioni Linux, conoscenza delle metodologie usate per risolvere le problematiche tipiche della gestione delle risorse. Ulteriore finalità del corso è quella di fornire abilità di base nell'uso di una piattaforma a livello utente ed amministratore, principi di scripting e programmazione di Sistema.

PROGRAMMA

Introduzione ai Sistemi Operativi: Definizioni di strutture, architetture e componenti. Gestione dei processi: Concetti, operazioni e comunicazioni sui processi; Definizioni di Thread; Gestione della CPU, criteri ed algoritmi di Scheduling e valutazione degli Algoritmi. Scheduling per sistemi di elaborazione in tempo reale. Sincronizzazione dei processi; Problema della sezione critica; Architetture di sincronizzazione; Semafori; Problemi tipici di sincronizzazione; Regioni critiche; Monitor. Stallo dei Processi: Rilevamento e ripristino da situazioni di stallo. Gestione della memoria: Avvicendamento dei processi, assegnazione contigua della memoria; Paginazione; Segmentazione. La memoria virtuale, definizioni di paginazione e segmentazione. Interfaccia e realizzazione del file system, Concetto di file, metodi di accesso, condivisione e protezione di file. Realizzazione della directory, metodi di assegnazione, gestione dello spazio libero, efficienza e prestazioni. Sistemi di I/O: Architetture e dispositivi di I/O; Interfaccia di I/O per le applicazioni; Sottosistema per l'I/O del nucleo; Trasformazione delle richieste di I/O in operazioni dei dispositivi; Prestazioni. Memoria secondaria e terziaria, struttura dei dischi, scheduling del disco, gestione dell'unità a disco, Gestione dell'area di avvicendamento; Strutture RAID; Connessione dei dischi; Strutture per la memorizzazione terziaria. Cenni alle architetture distribuite riguardanti aspetti di strutture, di protezione e sicurezza.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni. L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta multipla, a risposta libera, e/o esercizi numerici.

Terzo Anno

Al Technologies (ATTIVATO DALL'A.A. 2026/2027)

TITOLO INSEGNAMENTO IN INGLESE AI Technologies

SSD	INFO-01/A
CFU	6
Anno	Terzo
Semestre	Secondo
Propedeuticità	Algebra
Docenti	Canale unico: Anna Corazza.

OBIETTIVI FORMATIVI

Il corso si propone di mettere lo studente nelle condizioni di scegliere e applicare correttamente la tecnica di Intelligenza Artificiale (IA) maggiormente adatta al problema affrontato. Per ottenere questo risultato il corso introdurrà una panoramica delle diverse tecniche, includendo tra l'altro apprendimento automatico, compreso il deep learning, approcci logici ed euristici. A tale panoramica verranno affiancate modalità di formalizzazione applicate a diversi problemi di esempio, nei campi più tipici dell'IA, quali l'elaborazione del linguaggio naturale o la visione computazionale o applicazioni biomediche, e relative implicazioni etiche, ma anche esempi di problemi più immediatamente applicativi. Enfasi verrà posta sullo studio delle caratteristiche intrinseche e delle modalità di valutazione dei diversi approcci considerati.

CONTENUTI

Insegnamento da attivarsi nell'a.a. 2026/27. Contenuti dettagliati da definirsi.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

Modalità d'esame da definire.

Reti e Programmazione Distribuita (ATTIVATO DALL'A.A. 2026/2027)

TITOLO INSEGNAMENTO IN INGLESE

SSD	INFO-01/A
CFU	9
Anno	Terzo
Semestre	Primo
Propedeuticità	Algebra
Docenti	Canale 1: Riccardo Caccavale, Canale 2: Andrea Calì.

OBIETTIVI FORMATIVI

Il corso introduce i concetti fondamentali delle moderne reti di calcolatori e fornisce le necessarie conoscenze per affrontare l'analisi e lo studio di una rete distribuita di calcolatori. In particolare, saranno presentate le caratteristiche generali delle reti, la loro topologia, l'architettura ed i principali protocolli utilizzati per la trasmissione delle informazioni tra calcolatori, con particolare riferimento ai protocolli TCP/IP ed ai moderni apparati attivi di rete. Il corso si prefigge inoltre di fornire gli strumenti e le metodologie necessarie allo sviluppo di applicazioni distribuite e applicazioni di rete, sfruttando le interfacce di programmazione standard e delle system call al sistema Unix per progettare e realizzare programmi multi-processo e/o multithread e sviluppare applicazioni di rete.

CONTENUTI

Corso attivato a partire dall'anno accademico 2026/2027. Contenuti di dettaglio da definirsi.

MODALITÀ DIDATTICHE

Lezioni frontali e esercitazioni.

MODALITÀ DI ESAME

Modalità d'esame da definire.

Tecniche di Programmazione Avanzata (ATTIVATO DALL'A.A. 2026/2027)

TITOLO INSEGNAMENTO IN INGLESE

SSD	INFO-01/A
CFU	6
Anno	Terzo
Semestre	Primo
Propedeuticità	Linguaggi di Programmazione, Programmazione Object-Oriented, Algebra
Docenti	Canale unico: Marco Faella.

OBIETTIVI FORMATIVI

Il corso intende esporre gli studenti ad un'ampia gamma di funzionalità dei moderni linguaggi di programmazione, approfondendo ed espandendo le tematiche affrontate dal corso di Linguaggi di Programmazione I, con particolare riferimento ai linguaggi orientati agli oggetti. Alla fine del corso, gli studenti saranno in grado di utilizzare i costrutti linguistici più appropriati per raggiungere gli obiettivi di chiarezza, manutenibilità, robustezza ed efficienza dei manufatti software.

CONTENUTI

Corso attivato a partire dall'anno accademico 2026/2027. Contenuti di dettaglio da definirsi.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Tecnologie Web (ATTIVATO DALL'A.A. 2026/2027)

TITOLO INSEGNAMENTO IN INGLESE Web Technologies

SSD	INFO-01/A
CFU	9
Anno	Terzo
Semestre	Secondo
Propedeuticità	Programmazione Object-Oriented, Algebra
Docenti	Canale unico: Luigi Lucio Libero Starace.

OBIETTIVI FORMATIVI

L'obiettivo del corso è fornire una panoramica completa dei concetti fondamentali, dei protocolli di rete applicativi, delle tecnologie e degli strumenti allo stato dell'arte per la progettazione e la realizzazione di applicazioni web moderne. Gli obiettivi specifici includono:

- Comprensione dei principi fondamentali che regolano il World Wide Web, compresi i principali protocolli di rete a livello applicativo, la struttura dei dati e le dinamiche di navigazione.
- Saper progettare e implementare applicazioni web moderne, sicure e responsive, attraverso l'analisi critica delle esigenze del progetto e la selezione mirata delle tecnologie e degli strumenti più adatti.
- Sviluppare le competenze e le metodologie necessarie per rimanere aggiornati autonomamente in un settore in continua evoluzione, attraverso l'adozione di best practice per il lifelong learning.

CONTENUTI

Corso attivato a partire dall'anno accademico 2026/2027. Contenuti di dettaglio da definirsi.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Ingegneria del Software (ATTIVATO DALL'A.A. 2026/2027)

TITOLO INSEGNAMENTO IN INGLESE Software Engineering

SSD	INFO-01/A
CFU	9
Anno	Terzo
Semestre	Primo
Propedeuticità	Programmazione Object-Oriented, Algebra
Docenti	Canale 1: Sergio Di Martino/Luigi Lucio Libero Starace; Canale 2: Porfirio Tramontana/Bernardo Breve.

OBIETTIVI FORMATIVI

Fornire agli studenti gli strumenti e le metodologie di base dell'Ingegneria del software, dei processi di ingegneria del software e delle relative fasi, attività e deliverable (programming in the large). Fornire una visione dell'importanza della definizione di modelli, un dettaglio dei metodi di analisi e progettazione (anche formali) e dell'importanza dei linguaggi di modellazione del software per la comunicazione tra diversi attori coinvolti in un processo di ingegneria del software. Fornire conoscenze e metodi per condurre in autonomia attività di verifica dinamica del software. Fornire agli studenti gli strumenti e le metodologie di base della interazione uomo machina e della progettazione delle interfacce basandosi sui principi dello User centered Design; gli studenti approfondiranno lo studio delle metriche di usabilità delle interfacce, per giungere ad una corretta gestione e propria competenza dei concetti relativi alle tecniche di verifica e validazione del software destinato ad utenti finali, delle applicazioni mobile e dei siti web.

CONTENUTI

Corso attivato a partire dall'anno accademico 2026/2027. Contenuti di dettaglio da definirsi.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e Orale.

Per la prova scritta, i quesiti sono a risposta libera ed esercizi numerici. Progetto obbligatorio di gruppo.

Esami a Scelta Libera

Algorithm design

TITOLO INSEGNAMENTO IN INGLESE Algorithm design

SSD	INFO-01/A
CFU	6
Anno	Secondo
Semestre	Secondo
Propedeuticità	Analisi e Progettazione di Strutture Dati, Analisi e Progettazione di Algoritmi
Docenti	Canale unico: Fabio Mogavero.

OBIETTIVI FORMATIVI

Il corso intende fornire un'introduzione alle tecniche avanzate di progettazione degli algoritmi, alla complessità computazionale e alla trattabilità dei problemi. Vengono, in particolare, presentate le principali tecniche di dimostrazione di correttezza, esaminate le tecniche di progettazione greedy e di programmazione dinamica, con applicazioni alla soluzione di vari problemi di ottimizzazione, di compressione dei dati e problemi su grafi pesati. Vengono introdotte le classi di complessità P e NP e il concetto di NP-completezza e di riduzione tra problemi. Vengono infine presentate tecniche di progettazione ed analisi di algoritmi approssimati e di algoritmi randomizzati.

CONTENUTI

Il problema della correttezza degli algoritmi: dimostrazioni per induzione, dimostrazioni di correttezza di algoritmi ricorsivi. Tecniche di progettazione di algoritmi: introduzione agli algoritmi greedy ed alla programmazione dinamica per la soluzione di problemi di ottimizzazione (ad es., problema dello zaino intero e frazionario, percorsi minimi su grafi pesati, i codici di Huffman, problemi di scheduling). Introduzione alla Teoria della Complessità: problemi trattabili e non trattabili, le principali classi di complessità (P e NP), il concetto di riduzione polinomiale tra problemi e il concetto di NP-completezza, esempi di problemi NP completi e dimostrazioni di NP-completezza. Introduzione all'intrattabilità computazionale. Introduzione agli algoritmi approssimati; fattore di approssimazione; esempi di algoritmi approssimati per problemi su grafi. Introduzione agli algoritmi randomizzati. Progettazione ed analisi di algoritmi randomizzati per problemi di scheduling e problemi su grafi.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta libera.

Calcolo Numerico

TITOLO INSEGNAMENTO IN INGLESE Numerical Analysis

SSD	MATH-05/A
CFU	6
Anno	Secondo/Terzo
Semestre	Primo
Propedeuticità	nessuna
Docenti	Canale unico: Luisa D'Amore.

OBIETTIVI FORMATIVI

Il corso rappresenta una introduzione ai concetti fondamentali della matematica numerica per la risoluzione di problemi matematici che sono modelli di situazioni reali (calcolo scientifico) e si pone, pertanto, i seguenti obiettivi: analisi dei principali metodi che sono alla base della risoluzione numerica di alcune classi di problemi con particolare riguardo alla stabilità e all'efficienza; progettazione di algoritmi risolutivi efficienti ed accurati; sviluppo di tecniche implementative, analisi degli errori e testing.

CONTENUTI

Approccio computazionale alla risoluzione di un problema. Sorgenti di errore. Analisi degli errori: Forward e backward. L'aritmetica standard IEEE. Stabilità di un algoritmo numerico. Condizionamento di un problema matematico. Indice di condizionamento. Calcolo matriciale: metodi diretti per matrici piene e strutturate. Metodo di eliminazione di Gauss. Algoritmo di fattorizzazione LU. Stabilità dell'algoritmo di eliminazione di Gauss, strategie di pivoting. Attività di laboratorio.

MODALITÀ DIDATTICHE

Lezioni frontali ed attività di laboratorio.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta libera ed esercizi numerici.

Diritto dell'Informatica

TITOLO INSEGNAMENTO IN INGLESE Legal Informatics

SSD	GIUR-17/A
CFU	6
Anno	Secondo
Semestre	Secondo
Propedeuticità	nessuna
Docenti	Canale unico: da definire.

OBIETTIVI FORMATIVI

Obiettivo del corso è quello di fornire allo studente consapevolezza dell'esistenza di problemi giuridico/normativi legati alle nuove tecnologie, nonché strumenti conoscitivi per comprendere meglio il diritto d'autore, gestire progetti e attività professionali con un maggiore grado di autonomia, sviluppare e utilizzare tecnologie informatiche in modo conforme alla legge, ed avere consapevolezza degli aspetti giuridici in merito alla privacy in sistemi informatici.

CONTENUTI

Introduzione al corso: l'obiettivo del corso è quello di indicare le principali modalità che danno rilevanza all'informatica nel settore giuridico.

Ci si soffermerà pertanto sui seguenti istituti:

Copyright/diritto d'autore. La disciplina del diritto d'autore. Software, banche di dati, opere multimediali, siti web. Software proprietario e open source. La titolarità del software creato e contratto di libera professione. I diritti musicali e cinematografici. Peer to peer. Digital Rights Management. Tutela dei domain names.

Proprietà industriale. Il codice della proprietà industriale. Marchi, nomi a dominio e brevetti. Tutela brevettuale del software. Le rivendicazioni. Le banche dati dei brevetti nazionali e internazionali.

Contratti software. Il contratto e gli elementi essenziali del contratto. Nullità e annullabilità. Contratti tipici e atipici. Principali tipologie di contratti utili per l'ingegnere. Cessione dei diritti di utilizzazione economica del software. Licenza d'uso di software, licenze open source. Creative commons. Contratti di sviluppo software.

Privacy e sicurezza. Privacy e protezione dei dati personali nella società dell'informazione. Principi generali. Informativa e consenso. Diritti dell'interessato. Dati sensibili. Misure di sicurezza minime e idonee. Privacy e big data. Profilazione degli utenti in rete e comunicazioni commerciali - Il Regolamento Generale europeo sulla protezione dei dati (GDPR 679/2016).

Firme elettroniche/digitali e documenti informatici. Le firme elettroniche: tipologie e disciplina giuridica. Il documento informatico: definizione, validità e rilevanza giuridica. La validità legale di e-mail, pagine web, registri informatici. La certificazione della firma digitale. Posta elettronica certificata. Conservazione sostitutiva dei documenti informatici - Codice dell'amministrazione digitale (D.Lgs. 82/2005).

Commercio elettronico. Obblighi e responsabilità dei prestatori di servizi on-line. Responsabilità degli intermediari. Comunicazioni commerciali. I contratti conclusi con strumenti informatici. La tutela dei consumatori in rete - Codice del consumo. Diritto di recesso e clausole vessatorie.

Reati informatici. Danneggiamento o interruzione di un sistema informatico. Interferenza illecita in comunicazioni informatiche o telematiche. Frode informatica.

MODALITÀ DIDATTICHE

La didattica sarà articolata mediante lezioni frontali, esercitazioni seminariali anche con strumentazioni multimediali.

MODALITÀ DI ESAME

L'esame di articola in prova: Orale e discussione di elaborato progettuale.

Computer Forensics

TITOLO INSEGNAMENTO IN INGLESE Computer Forensics

SSD	INFO-01/A
CFU	6
Anno	Secondo/Terzo
Semestre	Secondo
Propedeuticità	Nessuna.
Docenti	Canale unico: Lorenzo Laurato.

OBIETTIVI FORMATIVI

Il corso si pone l'obiettivo di far acquisire agli studenti le competenze di base nell'ambito della Computer Forensics su aspetti teorici, tecnici, metodologie e regole giuridiche alle quali deve attenersi chi opera nel settore, con illustrazione delle tecniche paradigmatiche di indagine scientifica laddove è possibile ricorrere a prove in formato digitale sia per i casi di reati strettamente informatici, sia per gli altri tipi di illeciti in cui il dato informatico può rappresentare una prova, e relativa declinazione nel contesto normativo italiano.

CONTENUTI

Introduzione all'informatica forense. Elementi, ruolo, criticità e approccio metodologico dell'informatica forense. Normative e aspetti pragmatici relativi alla costruzione della prova. Aspetti legali e tecnologici relativi all'attendibilità del dato informatico e al trattamento del reperto informatico - nello specifico la disk forensics, e il trattamento dei file systems per la corretta acquisizione e la ricostruzione di informazioni. Strumenti Hardware e Software utilizzati nella digital forensics, ivi compresi la network forensics, la mobile forensics e l'embedded forensics. Metodologie per l'acquisizione di dati crittografati.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta multipla ed a risposta libera.

Economia e Organizzazione Aziendale

TITOLO INSEGNAMENTO IN INGLESE Economics

Insegnamenti propedeutici previsti: nessuno

SSD	IEGE-01/A
CFU	6
Anno	Secondo/Terzo
Semestre	Secondo
Propedeuticità	Nessuna
Docenti	Da definire

OBIETTIVI FORMATIVI

Il corso ha la finalità di introdurre gli studenti del Corso di Laurea in Informatica allo studio delle problematiche economiche, organizzative e gestionali delle imprese. In particolare, relativamente alle problematiche economiche, vengono forniti gli elementi relativi ai principali problemi decisionali che l'imprenditore deve affrontare (definizione del prezzo e dei volumi di vendita, dimensione dell'impresa, ottimizzazione dei costi di produzione). La conoscenza del funzionamento delle principali grandezze economiche che caratterizzano un sistema economico attraverso lo studio della Macroeconomia proietta lo studente nella conoscenza di una dimensione economica in cui l'impresa si trova ad operare. Relativamente alla organizzazione aziendale compito principale è quello di fornire allo studente, nello specifico settore del software, modelli organizzativi che caratterizzano le piccole e medie imprese.

CONTENUTI

La prima parte del corso fornisce la conoscenza degli elementi di Microeconomia quali la domanda individuale, la domanda di mercato, la tecnologia, la funzione di produzione e dei costi dell'impresa, il funzionamento del mercato nelle sue diverse forme. La seconda parte del corso fornisce la conoscenza di un modello semplificato di funzionamento di un sistema economico attraverso la conoscenza dei principali elementi che caratterizzano un sistema economico (il Prodotto Nazionale, i consumi, il risparmio, l'investimento, la moneta, l'inflazione, ecc.). La terza parte del corso fornisce la conoscenza del funzionamento di una impresa sin dalla sua costituzione anche attraverso la lettura ed interpretazione dei documenti contabili e fornirà un ulteriore arricchimento del funzionamento dei meccanismi che regolano la nascita, lo sviluppo e la decadenza delle imprese. Nel corso delle lezioni vengono proposte applicazioni ed esemplificazioni dei temi trattati.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Istituzioni di Matematica II

TITOLO INSEGNAMENTO IN INGLESE Calculus II

SSD	MATH-03/A
CFU	6
Anno	Secondo/Terzo
Semestre	Primo
Propedeuticità	Analisi Matematica I
Docenti	Mutuato dal Corso di Laurea in Ottica e Optometria

OBIETTIVI FORMATIVI

Il corso si prefigge lo scopo di introdurre gli studenti ai problemi di approssimazione di una funzione regolare mediante serie di potenze, al calcolo differenziale ed integrale per le funzioni di più variabili ed al concetto di modello matematico con particolare attenzione alle equazioni differenziali lineari.

CONTENUTI

Successioni e Serie di funzioni – Convergenza uniforme. Proprietà delle successioni e delle serie uniformemente convergenti. Serie totalmente convergenti. Serie di potenze: raggio di convergenza. Polinomi di Taylor: formula col resto in forma di Peano di Lagrange. Sviluppabilità in serie di Taylor: sviluppi notevoli. Cenni sulla funzione esponenziale nel campo complesso: formule di Eulero. Calcolo Differenziale – Funzioni continue, funzioni differenziabili: derivate parziali e derivate direzionali. Teorema del differenziale totale e significato geometrico. Formula di Taylor di ordine 2. Problemi di estremo libero: condizioni necessarie e condizioni sufficienti. Equazioni Differenziali – Il problema di Cauchy: Teoremi di esistenza ed unicità locale e globale. Equazioni del primo ordine a variabili separabili. Equazioni di Bernoulli. Equazioni differenziali lineari del primo e secondo ordine. Equazioni differenziali lineari del secondo ordine a coefficienti costanti, termini noti di tipo particolare. Metodo della variazione delle costanti arbitrarie. Cenni sui problemi ai limiti. Integrazione multipla – Integrale secondo Riemann. Formule di riduzione per integrali doppi e tripli. Cambiamenti di variabili in integrali doppi e tripli: il caso del cambiamento a coordinate polari.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta libera ed esercizi numerici.

Logics for computer science

TITOLO INSEGNAMENTO IN INGLESE Logics for computer science

SSD	INFO-01/A
CFU	6
Anno	Secondo/Terzo
Semestre	Secondo
Propedeuticità	Nessuna
Docenti	Canale unico: Massimo Benerecetti.

OBIETTIVI FORMATIVI

Acquisire una conoscenza delle principali proprietà sintattiche e semantiche della logica classica proposizionale e della logica del primo ordine. Acquisire familiarità con i principali sistemi deduttivi della logica classica che sono di interesse per l'informatica. Acquisire la capacità di formalizzare enunciati dichiarativi, problemi e ragionamenti nel linguaggio della logica classica, nonché di verificare la correttezza di ragionamenti informali.

CONTENUTI

Logica proposizionale: sintassi e semantica. Forme normali congiuntiva e disgiuntiva. La deduzione naturale. Calcolo dei sequenti. Tableaux analitici. Risoluzione, procedura di Davis-Putnam e metodo refutazionale. Correttezza, completezza e compattezza della logica proposizionale. Logica del primo ordine: elementi di sintassi e di semantica tarskiana. Tableaux analitici. Universo di Herbrand, clausole ground e metodo refutazionale. Formalizzazione e verifica formale di ragionamenti informali. Forma normale prenessa e skolemizzazione. Correttezza, completezza e compattezza della logica del primo ordine. Teorema di Skolem-Lowenheim e modelli non-standard. Cenni ai teoremi di incompletezza di Goedel. Dimostrabilità, verità e insiemi ricorsivamente enumerabili.

MODALITÀ DIDATTICHE

Lezioni frontali ad argomento teorico ed esercitazioni per la soluzione di esercizi e problemi elementari di logica.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta libera ed esercizi numerici.

Operating systems for mobile, cloud and IoT

TITOLO INSEGNAMENTO IN INGLESE Operating systems for mobile, cloud and IoT

SSD	INFO-01/A
CFU	6
Anno	Secondo
Semestre	Secondo
Propedeuticità	Sistemi Operativi
Docenti	Canale unico: Barra Silvio.

OBIETTIVI FORMATIVI

Il corso si pone come obbiettivo principale quello di analizzare in modo approfondito e dettagliato gli algoritmi e le strutture dati implementati in un sistema operativo (Linux 2.6). In secondo luogo, esso affronta le stesse problematiche, in contesti differenti, quali i dispositivi mobile, il Cloud e lot (Internet of Things).

CONTENUTI

Il corso di Sistemi Operativi II ha una duplice finalità. In primo luogo, esso intende completare lo studio dei sistemi operativi tradizionali affrontati nel corso di Sistemi Operativi 1, approfondendo alcuni concetti come la gestione della memoria, dei processi e degli interrupt in un sistema operativo specifico, ossia Linux con kernel 2.6. D'altro canto, approfondisce i medesimi aspetti nel contesto dei sistemi operativi mobile con particolare attenzione a MAC iOS e Android. L'ultima parte del corso è invece dedicata all'approfondimento di tematiche legate ai sistemi operativi real-time e Cloud. Nello specifico, i principali temi affrontati riguardano: 1) I Sistemi Operativi Open-Source Linux OS, 2) La Gestione della Memoria in Linux, 3) La Gestione dei Processi in Linux, 4) Lo Scheduling dei Processi, 5) I Processi e la Memoria, 6) Il Virtual File Sistem, 7) I sistemi Grid, Cloud e WebOS, 8) Dispositivi e Sistemi Mobile, 9) Symbian OS, 10) Android OS, 11) Mac iOS, 12) La sicurezza nei sistemi operativi mobile (SELinux vs. SEAndroid), 13) Accesso sicuro ad un dispositivo mobile e/o tramite un dispositivo mobile, 14) I sistemi operativi Real-time.

MODALITÀ DIDATTICHE

Lezioni frontali.

MODALITÀ DI ESAME

L'esame di articola in prova: solo orale.

Parallel and Distributed Computing

TITOLO INSEGNAMENTO IN INGLESE Parallel and Distributed Computing

Insegnamenti propedeutici previsti: nessuno

SSD	INFO-01/A
CFU	6
Anno	Secondo/Terzo
Semestre	Primo
Propedeuticità	Nessuna
Docenti	Canale unico: Marco Lapegna.

OBIETTIVI FORMATIVI

Fornire idee di base, metodologie, strumenti software per lo sviluppo di algoritmi in ambiente di calcolo paralleli e/o distribuiti ad alte prestazioni. Parte integrante del corso è l'attività di laboratorio.

CONTENUTI

Concetto di "parallelismo" e di "alte prestazioni". I supercomputer. Classificazione e principali caratteristiche funzionali delle architetture parallele (classificazione di Flynn, rivista e aggiornata). Parametri di valutazione delle prestazioni degli algoritmi paralleli. I parametri classici di SpeedUp ed Efficiency. Metodologie per lo sviluppo di algoritmi paralleli e loro dipendenza dall'architettura. Esempi di progettazione e implementazione di algoritmi su architetture di tipo MIMD distributed memory (uso di message programming; la libreria MPI) e di tipo MIMD shared memory (l'esempio dei multicore; condivisione di memoria; la libreria OpenMP). Parametri di valutazione e scalabilità degli algoritmi paralleli. SpeedUp scalato ed Efficiency scalata. Il bilanciamento del Carico. Algoritmi tolleranti alla latenza e ai guasti. I/O parallelo. Algoritmi di base in ambiente parallelo e distribuito: ordinamenti, calcolo matriciale.

MODALITÀ DIDATTICHE

Parte integrante del corso sono le attività di laboratorio. Durante il corso, presentazione a scadenza fissata d 2-3 miniprogetti, da realizzare in ambiente MPI e/o OpenMP; la presentazione in tempo utile (e la sufficienza della qualità del lavoro) di tali miniprogetti, esonera gli studenti dalla prova d'esame al calcolatore.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta libera ed esercizi numerici.

Operation Research

TITOLO INSEGNAMENTO IN INGLESE Operations Research

SSD	MATH-06/A
CFU	6
Anno	Terzo
Semestre	Primo
Propedeuticità	Analisi e Progettazione di Strutture Dati
Docenti	Canale unico: Paola Festa.

OBIETTIVI FORMATIVI

Acquisire una conoscenza delle principali proprietà sintattiche e semantiche della logica classica proposizionale e della logica del primo ordine. Acquisire familiarità con i principali sistemi deduttivi della logica classica che sono di interesse per l'informatica. Acquisire la capacità di formalizzare enunciati dichiarativi e problemi nel linguaggio della logica classica, nonché di verificare la correttezza di un ragionamento informale.

CONTENUTI

Problemi di Programmazione Lineare e Metodo del Simplesso. Definizione e classificazione dei problemi di ottimizzazione e dei problemi di decisione e classificazione dei relativi metodi risolutivi (metodi esatti, metodi di approssimazione e metodi euristici). Programmazione Lineare (PL): il Metodo del Simplesso. Problemi di Programmazione Lineare Intera (1 credito) Metodi esatti per la risoluzione dei problemi di Programmazione Lineare Intera (Branch & Bound; piani di taglio; programmazione dinamica). Esempi di problemi di PLI con matrice dei vincoli uni-modulare: il problema del trasporto ed il problema dell'assegnamento. Problemi dello Zaino. Un algoritmo Branch and Bound per il problema dello Zaino 0/1; un algoritmo greedy per il problema dello Zaino Frazionario; due algoritmi di Programmazione Dinamica per il problema dello Zaino 0/1. Problemi di Ottimizzazione su grafi ed alberi: Vertex Cover ed Albero di Copertura Minimo. Il problema del Vertex Cover: un algoritmo 2-approssimato per il problema del Vertex Cover. Il problema dell'albero di copertura di un grafo a costo minimo (MST): l'algoritmo di Kruskal. Problemi di Ottimizzazione su grafi ed alberi: Problemi di Cammino Minimo. Cammini in un grafo orientato: il problema della raggiungibilità (visita in ampiezza; visita in profondità). Il problema dei cammini minimi: l'algoritmo di Dijkstra; l'algoritmo di Floyd e Warshall. Problemi di Ottimizzazione su grafi ed alberi: Pianificazione di un Progetto e Problema del Massimo Flusso. Pianificazione di un progetto: il Metodo CPM. Problemi di flusso su reti: il problema del massimo flusso; teorema max-flow min-cut; algoritmo di Ford-Fulkerson.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: Scritta e orale.

Per la prova scritta, i quesiti sono a risposta libera ed esercizi numerici.

Scientific Computing

TITOLO INSEGNAMENTO IN INGLESE Scientific Computing

Insegnamenti propedeutici previsti: nessuno

SSD	MATH-05/A
CFU	6
Anno	Secondo/Terzo
Semestre	Primo
Propedeuticità	Nessuna
Docenti	Canale Unico: Eleonora Messina.

OBIETTIVI FORMATIVI

Approfondimento delle problematiche legate allo sviluppo, implementazione ed analisi degli algoritmi numerici per la risoluzione di problemi significativi del mondo reale. Lo studente sarà in grado di: -analizzare e confrontare i metodi in base al diverso problema applicativo da risolvere; -interpretare i risultati computazionali anche in relazione alle proprietà di consistenza, convergenza e stabilità; risolvere modelli matematici di problemi della scienza e dell'ingegneria scegliendo metodi numerici appropriati, mediante l'implementazione degli algoritmi in un opportuno ambiente di calcolo e/o l'uso di librerie di software scientifico.

CONTENUTI

Sistemi lineari: fattorizzazione di matrici con speciali strutture (simmetriche definite positive, a banda, sparse) e risoluzione. Problemi di minimi quadrati lineari: risoluzione delle equazioni normali. Metodi iterativi per sistemi lineari: metodi stazionari, metodo del gradiente coniugato. Equazioni e sistemi non lineari: il metodo delle iterazioni a punto fisso, il metodo di Newton e le sue varianti. Modelli matematici ed equazioni differenziali ordinarie. Soluzione numerica di problemi ai valori iniziali, con metodi ad un passo, e di problemi ai limiti, con metodi alle differenze finite. Esempi ed applicazioni.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni in laboratorio

MODALITÀ DI ESAME

L'esame di articola in prova: solo orale.

Sviluppo di progetti e prova al calcolatore

Multimedia Information Systems

TITOLO INSEGNAMENTO IN INGLESE Multimedia Information Systems

Insegnamenti propedeutici previsti: Basi di dati I

SSD	INFO-01/A
CFU	6
Anno	Secondo/Terzo
Semestre	Secondo
Propedeuticità	Nessuna.
Docenti	Canale Unico: Walter Balzano.

OBIETTIVI FORMATIVI

Il corso tratta i principali modelli e tecniche per la gestione dei dati e dei sistemi informativi multimediali. Particolari riferimenti sono relativi ai meccanismi di storing, ricerca e browsing per contenuto su database multimediali, relazione tra database multimediali ed il Web. Particolare attenzione è rivolta a sistemi di localizzazione quali GPS, Fingerprinting ed INS.

CONTENUTI

Il corso è suddiviso in due parti. Prima parte: definizioni e classificazioni dei Media e dei Multimedia. Gestione di dati multimediali audio/video, dalla digitalizzazione alla consultazione degli stessi con particolari riferimenti ai concetti di Storing, Digital Signal Processing, Compressione e Streaming. Seconda parte: Sistemi Multimediali Digitali, Distribuiti ed Interattivi. Valutazioni di complessità, controllo ed adattamento. Presentazione ed interfacce utente. Cenni ai Sistemi Informativi Multimediali con riferimento alla relazione tra Database multimediali ed il Web. Sistemi di Localizzazione, GPS, Fingerprinting ed Inertial Measurement System.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME

L'esame di articola in prova: solo orale

Schede degli Insegnamenti – Manifesto ante 2024-2025

Primo Anno

Algebra (DISATTIVATO DALL'A.A. 2024/2025)

TITOLO INSEGNAMENTO IN INGLESE Algebra

Docenti: Canale 1 Maria Rosaria Celentani, Canale 2 Giovanni Cutolo, Canale 3 Mattia Brescia

een	CFU		Anno di corso		Sem	estre	Lingua
SSD	Cro	1	II	III	1	Ш	Italiano
MAT/02	9	х			х		х

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Obiettivo del corso è quello di fornire allo studente la capacità di utilizzare correttamente il linguaggio insiemistico, migliorare la sua capacità di astrazione e quella di riconoscere strutture matematiche, focalizzando l'attenzione sulle principali strutture algebriche e su quelle della matematica discreta che hanno applicazioni in informatica. Lo studente acquisirà, in particolare, familiarità con l'aritmetica modulare, con le proprietà dei polinomi su campi di ordine primo, e saprà riconoscere e descrivere in dettaglio relazioni di equivalenza, ordinamenti e reticoli, strutture booleane incluse.

CONTENUTI

Logica intuitiva, introduzione elementare al calcolo dei predicati. Linguaggio della teoria degli insiemi, applicazioni e confronto tra insiemi. Calcolo combinatorio, fattoriali, coefficienti binomiali. Relazioni binarie: equivalenze e partizioni; ordinamenti, buon ordinamento dei numeri naturali e principio di induzione; introduzione a grafi e alberi. Operazioni e strutture algebriche. Semigruppi, monoidi, gruppi, anelli, campi. Parti stabili, sottostrutture. Omomorfismi e strutture quoziente. Reticoli, algebre di Boole, anelli booleani. Reticoli come particolari insiemi ordinati e come strutture algebriche. Sottoreticoli, isomorfismi. Connessioni tra reticoli, algebre e anelli di Boole. Aritmetica. L'anello Z degli interi, il teorema fondamentale dell'aritmetica, l'algoritmo euclideo delle divisioni successive. Congruenze in Z, gli anelli delle classi di resto, aritmetica modulare. Equazioni congruenziali lineari. Polinomi. L'anello dei polinomi a una indeterminata, divisione tra polinomi. Applicazioni polinomiali, radici di un polinomio, teorema di Ruffini e sue conseguenze. Polinomi irriducibili; fattorizzazione di polinomi a coefficienti in un campo.

MODALITÀ DIDATTICHE

	L'esame si articola in prova	Scritta e orale	X	Solo scritta]	Solo orale	
--	------------------------------	-----------------	---	--------------	---	------------	--

In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	х	Esercizi numerici	
Altro						

Analisi Matematica I

TITOLO INSEGNAMENTO IN INGLESE Calculus I

Docenti: Canale 1 Francesco Oliva, Canale 2 Daniele Castorina, Canale 3 Anna Maria Barbagallo

SSD	CFU		Anno di corso		Sem	estre	Lingua
330	CFU	1	II	III	1	Ш	Italiano
MAT/05	9	x			х		х

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Pieno possesso della simbologia insiemistica. Consapevolezza della necessità dei vari ampliamenti numerici e delle relative procedure. Conoscenza delle proprietà e dei grafici delle funzioni: lineare, valore assoluto, potenza, esponenziale, logaritmo, trigonometriche e trigonometriche inverse. Conoscenza della definizione di limite, di continuità e del significato geometrico e fisico di derivata. Calcolo di derivate di funzioni. Conoscenza e uso dei Teoremi di Rolle, Lagrange e Cauchy. Calcolo dei limiti con e senza regola di l'Hopital. Studio del grafico di una funzione reale di una variabile reale. Approssimazione di funzioni regolari mediante polinomi. Zeri di una funzione, conoscenza di vari algoritmi. Conoscenza del concetto di serie. Conoscenza del significato geometrico degli integrali definiti. Calcolo di integrali indefiniti.

CONTENUTI

Cenni di Teoria degli insiemi. Insiemi numerici: i numeri naturali; i numeri interi; il principio di induzione; i numeri razionali; i numeri reali; funzioni reali di una variabile reale e loro rappresentazione cartesiana; funzioni invertibili e funzione monotone; le funzioni elementari. Estremi inferiore e superiore di insiemi e funzioni. Successioni e loro limiti. Limiti di funzione e funzioni continue. Funzioni continue in un intervallo. Derivate. Massimi e minimi. Criteri di monotonia. Funzioni convesse e concave. Formula di Taylor ed applicazioni. Metodo di Newton. Integrale di Riemann: definizione e proprietà principali. Integrabilità delle funzioni continue. Integrali indefiniti. Teorema fondamentale del calcolo integrale. Formula fondamentale del calcolo integrale. Serie numeriche.

MODALITÀ DIDATTICHE

Altro

Lezioni frontali. Esercitazioni.

MODALITÀ DI ESAME						
L'esame si articola in prova	Scritta e orale	х	Solo scritta		Solo orale	
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	х	Esercizi numerici	x

Architettura degli Elaboratori

TITOLO INSEGNAMENTO IN INGLESE Computer Architecture

Docenti: Canale 1 Silvia Rossi, Canale 2 Luigi Sauro, Canale 3 Roberto Prevete

SSD	CFU		Anno di corso		Sem	estre	Lingua
330	CFU	1	II	III	1	Ш	Italiano
INF/01	9	x				х	x

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Conoscere e applicare le principali codifiche digitali dei dati. Saper interpretare e manipolare espressioni dell'algebra di Boole. Saper tradurre un'espressione booleana in circuito combinatorio e viceversa. Saper minimizzare espressioni booleane. Conoscere le macchine di Moore e Mealy. Conoscere la struttura dei principali circuiti logico-aritmetici e delle ALU.

Conoscere l'architettura dei microprocessori basati sul paradigma ARM. Saper realizzare programmi in linguaggio assembly di un processore ARM. Conoscere le principali architetture di memoria, incluse le memorie cache e la memoria virtuale.

CONTENUTI

Rappresentazioni digitale dei dati. Operazioni aritmetiche e overflow. Algebra di Boole, funzioni booleane, circuiti combinatori e porte logiche. Minimizzazione di funzioni booleane. Multiplexer e decoder. Elementi di timing. Circuiti sequenziali elementari: latch e flip-flop. Macchine di Mealy e Moore: analisi e sintesi. Circuiti addizionatori e ALU. Architettura ARM: elementi hardware, formato istruzione, architettura interna. Programmazione in assembly ARM. Connessioni con i costrutti del linguaggio C. Introduzione alle memorie cache. Analisi delle prestazioni di sistemi con cache. Introduzione al concetto di memoria virtuale. Traduzione degli indirizzi. Architetture a ciclo singolo, a ciclo multiplo e basate su pipeline.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni.

L'esame si articola in prova	Scritta e orale	х	Solo scritta		Solo orale
In caso di prova scritta i quesiti sono	A risposta multipla	x	A risposta libera	x	Esercizi numerici
Altro					

Fisica Generale I

TITOLO INSEGNAMENTO IN INGLESE General Physics I

Docenti: Canale 1 Da definire, Canale 2 Goffredo Chirco, Canale 3 Giampiero Esposito

SSD	CFU		Anno di corso		Sem	estre	Lingua
330	CFU	1	II	III	1	II	Italiano
FIS/01	6	x				x	х

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Il contenuto del corso di Fisica è stato concepito con lo scopo preciso di far acquisire allo studente del corso di laurea in Informatica un metodo di analisi e di sintesi dei problemi da affrontare nel prosieguo dei corsi tenendo conto del metodo sperimentale proprio delle scienze fisiche. Inoltre, si dà conto dei principi di base delle metodologie fisiche che potranno risultare utili al futuro laureato in Informatica.

CONTENUTI

- 1. Elementi di Meccanica ed Applicazioni: Introduzione al metodo scientifico. Cinematica del punto materiale. Principi di dinamica del punto materiale. Energia e lavoro. Dinamica dei sistemi. Corpo rigido. Gravitazione.
- 2. Elementi di Termodinamica: Sistemi termodinamici. Primo principio della termodinamica. Il secondo principio della termodinamica.

MODALITÀ DIDATTICHE

The state of the s		
Lezioni frontali. Esercitazioni.		
Edziorii irontati: Eddi ditaziorii:		

L'esame si articola in prova	Scritta e orale	x	Solo scritta		Solo orale	
In caso di prova scritta i quesiti sono	A risposta multipla	х	A risposta libera	x	Esercizi numerici	x
Altro			•	•		

Geometria

TITOLO INSEGNAMENTO IN INGLESE Geometry

Docenti: Canale 1 Francesca Cioffi, Canale 2 Marco Trombetti, Canale 3 Da definire

SSD	Anno di corso				Sem	Lingua	
330	CFU	1	II	III	1	Ш	Italiano
MAT/03	6	х				х	х

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Questo corso di primo livello ha l'obiettivo di presentare i metodi e gli strumenti dell'Algebra Lineare fornendo allo studente un approccio rigoroso allo studio dei sistemi lineari, degli spazi vettoriali, delle matrici e loro relazioni con le trasformazioni lineari, formalizzando poi la Geometria elementare del piano e dello spazio nell'ambito della teoria degli spazi vettoriali reali.

CONTENUTI

Conoscenza di base della teoria degli spazi vettoriali su un campo, con particolare riguardo al caso degli spazi reali di dimensione finita. Conoscenza di base del calcolo matriciale e dei legami tra matrici e trasformazioni lineari. Teoria dei sistemi lineari. Calcolo degli autovalori e degli autovettori di un operatore lineare e problema della diagonalizzazione. Piano e spazio tridimensionale euclidei, riferimenti e coordinate cartesiani e uso del linguaggio e dei metodi dell'algebra lineare per la risoluzione di problemi geometrici. Isometrie e movimenti del piano e dello spazio.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni.

L'esame si articola in prova	Scritta e orale	x	Solo scritta		Solo orale	
	1					
In caso di prova scritta i quesiti sono	A risposta multipla	x	A risposta libera	x	Esercizi numerici	x
Altro						

Laboratorio di Programmazione (DISATTIVATO DALL'A.A. 2024/2025)

TITOLO INSEGNAMENTO IN INGLESE Computer Programming Laboratory

Docenti: Canale 1 Laura Bozzelli; Canale 2 Antonio Origlia; Canale 3 Andrea Apicella

SSD	CFU		Anno di corso			estre	Lingua
330	CFU	1	II	III	1	II	Italiano
INF/01	6	х				х	х

Insegnamenti propedeutici previsti: nessuno.

OBIETTIVI FORMATIVI

Il corso di Laboratorio di Programmazione ha lo scopo di fornire agli studenti le tecniche per sviluppare programmi e le prime strutture dati in linguaggio C. Il corso inizia con un riepilogo dei concetti appresi durante il corso di Programmazione I. Si porranno gli allievi di fronte a problemi di crescente complessità, che verranno risolti in modi diversi allo scopo di far apprezzare gli strumenti forniti dal linguaggio in modo efficace. Al termine del corso, gli studenti avranno acquisito le seguenti capacità operative: 1) identificazione delle strutture dati e degli algoritmi adatti alla risoluzione di semplici problemi; 2) Implementazione in linguaggio C di algoritmi e strutture dati; 3) Strutturazione modulare di un programma; 4) Utilizzo dei principali strumenti per la programmazione.

PROGRAMMA

Rappresentazione di dati e istruzioni. Costanti macchina. Introduzione alle funzionalità elementari del sistema operativo Unix/Linux. Linguaggio C. Tipi di dato primitivi. Input e output. Esecuzione condizionale. Iterazione. Vettori. Strutture. Funzioni. Puntatori e aritmetica dei puntatori. Strutture dati dinamiche.

Compilatore e linker. Il preprocessore del C. Debug di programmi. File header. Programmi multi-file. Ambiente di sviluppo di programmi. La documentazione del software. Le librerie standard del C.

MODALITÀ DIDATTICHE

Lezioni frontali. Svolgimento di esercitazioni in laboratorio.

L'esame si articola in prova	Scritta e orale	х	Solo scritta	Solo orale	

In caso di prova scritta i quesiti sono	A risposta multipla			A risposta libera		Esercizi numerici	x
Altro	Sviluppo piccoli pro calcolatore	oget	tti/e	esercizi, algoritmi e s	oftwa	re; prova al	

Programmazione (DISATTIVATO DALL'A.A. 2024/2025)

TITOLO INSEGNAMENTO IN INGLESE Computer Programming

Docenti: Canale 1 Giuliano Laccetti; Canale 2 Daniel Riccio, Canale 3 Francesco Isgrò

SSD	CFU		Anno di corso		Sem	estre	Lingua
330	CFU	_	II	Ш	1	II	Italiano
INF/01	9	x			х		х

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Presentare il paradigma della programmazione imperativa utilizzando iterazione e ricorsione e, partendo da semplici esercizi, mettere in grado gli studenti di scrivere algoritmi non troppo complessi.

CONTENUTI

Introduzione al concetto di algoritmo. Rappresentazione di dati e istruzioni. Progettazione top down di un algoritmo e sua implementazione. I costrutti di controllo: sequenza, iterazione e selezione. Le functions e l'astrazione procedurale. Passaggio di parametri. Concetto di ADT. ADT Array e Stringhe. I file di testo. Algoritmi di ricerca di elemento in array. Algoritmi di ricerca di elemento in array ordinati (binary search). Algoritmi di calcolo matriciale.

ADT record. I tipi di dati derivati. La ricorsione. Utilità e potenza della ricorsione in alcuni casi significativi. Puntatori e variabili dinamiche. ADT linked list; stack; queue. Principali algoritmi per la loro gestione.

Introduzione al linguaggio C. La documentazione del software.

MODALITÀ DIDATTICHE

Sviluppo e presentazione di piccoli progetti/esercizi durante il corso, linguaggio C

MODALITÀ DI ESAME

l 'esame si articola in prova

L esame si articota ili prova	Scritta e orate		Joto Jonita		Solo orate	
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	х	Esercizi numerici	x
Altro	Sviluppo piccoli pro	ogetti/e	esercizi, algoritmi e	softv	ware	

Secondo Anno

Algoritmi e Strutture Dati I (DISATTIVATO DALL'A.A. 2025/2026)

TITOLO INSEGNAMENTO IN INGLESE Algorithms and Data Structures I

Docenti: Canale I Massimo Benerecetti, Canale 2 Fabio Mogavero

SSD	CFU		Anno di corso		Sem	estre	Lingua
330	CFO	1	II	III	1	Ш	Italiano
INF/01	9		х		х		х

Insegnamenti propedeutici previsti: Analisi matematica I, Programmazione

OBIETTIVI FORMATIVI

Il corso si propone di fornire le conoscenze di base per la progettazione e l'analisi di algoritmi e strutture dati efficienti. In particolare, verranno illustrate le tecniche di base per l'analisi della complessità degli algoritmi e per la valutazione dell'efficienza delle principali strutture dati. Tali concetti verranno illustrati a livello teorico e metodologico e applicati, a titolo esemplificativo, all'analisi di algoritmi specifici per risolvere problemi fondamentali (ad esempio, algoritmi di ordinamenti e di ricerca), di strutture dati elementari (tra cui liste, alberi, grafi) e strutture dati avanzate (come tabelle hash e alberi bilanciati).

CONTENUTI

Cenni al calcolo della complessità computazionale degli algoritmi: notazione asintotica; calcolo del tempo di esecuzione di algoritmi iterativi; calcolo del tempo di esecuzione di algoritmi ricorsivi, metodi di soluzione di equazioni di ricorrenza. Analisi di complessità dei principali algoritmi di ordinamento: insertion sort, selection sort, merge sort, heap sort, quick sort. Strutture dati elementari e algoritmi fondamentali: heap, code a priorità, stack, liste puntate, alberi. Alberi binari di ricerca, alberi bilanciati: algoritmi di ricerca, inserimento, cancellazione in alberi binari di ricerca, alberi AVL e alberi Rossi e Neri. Tabelle ad Accesso Diretto e Tabelle Hash. Rappresentazione di grafi e grafi pesati, algoritmi di attraversamento di grafi: algoritmi di visita in ampiezza (BFS) e in profondità (DFS). Applicazioni delle visite di grafi: cammini minimi in grafi non pesati, verifica dell'aciclicità di un grafo orientato, ordinamenti topologici di grafi aciclici, componenti fortemente connesse. Problemi su grafi pesati: albero minimo di copertura, cammini minimi su grafi pesati.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

In caso di prova scritta i quesiti sono

l'esame si articola in prova	Scritta e orale	x	Solo scritta	Solo orale	

A risposta libera

Χ

numerici

A risposta multipla

Altro	
Attio	

Basi di dati I (DISATTIVATO DALL'A.A. 2025/2026)

TITOLO INSEGNAMENTO IN INGLESE Data Bases I

Docenti: Canale 1 Mara Sangiovanni, Canale 2 Silvio Barra

SSD	CFU		Anno di corso		Sem	estre	Lingua
550	CFO	1	II	Ш	- 1	II	Italiano
INF/01	9		х		x		х

Insegnamenti propedeutici previsti: Programmazione

OBIETTIVI FORMATIVI

Obiettivo del corso è l'acquisizione delle metodologie per la progettazione e l'implementazione di una base di dati e la predisposizione della sua interfaccia con utenti e/o programmi applicativi. In particolare, lo studente acquisirà le metodologie per strutturare e documentare il progetto; acquisirà gli elementi per la comprensione della struttura, delle funzionalità e degli aspetti tecnologici dei sistemi per la gestione di basi di dati (DBMS) con particolare riferimento a quelli che adottano un modello relazionale dei dati. Lo studente acquisirà conoscenza dei linguaggi standard di interrogazione e manipolazione dei dati per il modello relazionale dei dati.

CONTENUTI

Architettura dei Sistemi per la gestione di basi di dati. Progettazione concettuale di un database, modello dei dati (descritto mediante Class Diagram UML) e vincoli. Documentazione della progettazione concettuale. Il modello relazionale dei dati e progettazione logica dei dati. Algebra relazionale per l'interrogazione delle basi di dati relazionali.

Lo standard SQL99 per:

- la definizione dei dati,
- la definizione dei vincoli di dominio, di ennupla, intra-relazionali e inter-relazionali;
- la interrogazione dei dati e la definizione delle viste;
- l'aggiornamento dei dati;
- l'aggiornamento dei metadati;
- La definizione degli indici.

Introduzione alle tecniche di programmazione per basi di dati:

- Approccio basato su linguaggio di programmazione per basi di dati;
- Approccio basato su chiamate di funzione SQL per la programmazione Java (JDBC);
- I trigger;
- Le procedure memorizzate;
- · SQL dinamico.

Aspetti di sicurezza nelle basi di dati: controllo d'accesso, risorse e privilegi. Cenni sulla tecnologia di un database server: la gestione delle transazioni. La normalizzazione delle basi di dati relazionali.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.		
i Lezioiii iloiitati. Leelettazioiii.		

MODALITA DI ESAME						
L'esame si articola in prova	Scritta e orale	Scritta e orale X		Solo scritta		
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	x	Esercizi numerici	х
Altro						

Elementi di Informatica Teorica

TITOLO INSEGNAMENTO IN INGLESE Introduction to Theoretical Computer Science

Docenti: Canale 1 Alessandro De Luca, Canale 2 Aniello Murano

een	CFU		Anno di corso		Sem	estre	Lingua
SSD	CFO	1	II	III	1	II	Italiano
INF/01	6		x		х		x

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Introdurre lo studente a nozioni e risultati teorici di base soggiacenti all'informatica. Lo studente potrà impadronirsi di concetti fondamentali dell'Informatica teorica e dei relativi modelli astratti di calcolo, apprezzandone l'utilità sia per un inquadramento generale del curriculum in Informatica sia per lo sviluppo delle sue capacità professionali.

CONTENUTI

Automi finiti e macchine sequenziali. Automi non deterministici. Linguaggi regolari. Espressioni regolari. Pumping lemma per i linguaggi regolari. Grammatiche e linguaggi indipendenti dal contesto. Forme normali di Chomsky. Automi a pila e non determinismo. Corrispondenza tra automi e grammatiche. Pumping lemma per i linguaggi indipendenti dal contesto. La gerarchia di Chomsky. I concetti di algoritmo, funzione calcolabile e parzialmente calcolabile. Funzioni primitive ricorsive. La minimalizzazione. Funzioni parziali ricorsive. Numerazioni di Goedel. Macchina universale. Tesi di Church - Turing. Problemi di decisione e di enumerazione. Indecidibilità. Insiemi ricorsivi e ricorsivamente numerabili. Macchina di Turing e indecidibilità, Complessità computazionale: nozioni di base.

MODALITÀ DIDATTICHE

Lezioni frontali ad argomento teorico ed esercitazioni per la soluzione di esercizi e problemi elementari di informatica teorica.

L'esame si articola in prova	Scritta e orale	Х	Solo scritta		Solo orale		
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	x	Esercizi numerici	Х	
Altro		•	•	•			_

Laboratorio di Algoritmi e Strutture Dati (DISATTIVATO DALL'A.A. 2025/2026)

TITOLO INSEGNAMENTO IN INGLESE Algorithm and Data Structures Laboratory

Docenti: Canale 1 Fabio Mogavero; Canale 2 Aniello Murano

SSD	CFU		Anno di corso		Sem	estre	Lingua
330	Cru	1	Ш	Ш	1	Ш	Italiano
INF/01	6		х			х	х

Insegnamenti propedeutici previsti: Programmazione, Laboratorio di Programmazione

OBIETTIVI FORMATIVI

Obiettivo del corso è familiarizzare lo studente con la progettazione e l'implementazione di algoritmi e strutture dati. In particolare, si vuole dare allo studente la capacità di produrre codice chiaro, modulare, generale ed efficiente attraverso i seguenti passi: analisi del problema, individuazione di una soluzione generale ed efficiente, stesura del codice, documentazione delle scelte effettuate e del codice prodotto.

CONTENUTI

Dopo un richiamo alle principali strutture dati di base, si procederà allo studio delle rappresentazioni e implementazioni di tipi di dati astratti quali Liste, Pile, Alberi e una panoramica sui Contenitori. Verrà di seguito affrontate la progettazione di librerie di base per Alberi Binari di Ricerca e Code a Priorità, che siano indipendenti dal tipo dei dati in essi contenuti (strutture dati generiche). Verranno illustrate le loro possibili implementazioni, anche in relazione alle Librerie Standard. Successivamente, si tratterà sistematicamente la rappresentazione e implementazione dei grafi e delle tecniche di visita associate. Verranno, inoltre, introdotti e implementati alcuni algoritmi che operano su grafi pesati, come ad esempio l'algoritmo di Dijkstra, quello di Bellman-Ford e tecniche di visita euristica, in particolare l'algoritmo A*. In questo contesto, l'obiettivo generale è quello di progettare e implementare algoritmi e, più in generale, librerie che operino in maniera il più indpendente possibile dalla struttura dati concreta impiegata.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni in laboratorio.	
i Lezioiii ilolitati eu eselcitazioiii ili tabolatoiio.	

L'esame si articola in prova	Scritta e orale	X	Solo scritta		Solo orale	
				_		
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera		Esercizi numerici	
Altro	Sviluppo progetti					

Linguaggi di Programmazione I (DISATTIVATO DALL'A.A. 2025/2026)

TITOLO INSEGNAMENTO IN INGLESE Programming Languages I

Docenti: Canale 1 Piero Bonatti, Canale 2 Marco Faella

SSD	CFU		Anno di corso		Sem	estre	Lingua
טפפ	CFO	1	Ш	Ш	1	Ш	Italiano
INF/01	6		х			х	х

Insegnamenti propedeutici previsti: Programmazione, Laboratorio di Programmazione

OBIETTIVI FORMATIVI

Fornire gli elementi tecnici per classificare i numerosissimi linguaggi di programmazione esistenti, rispetto a paradigma di computazione, caratteristiche del sistema di tipi, modalità di gestione della memoria, controllo di flusso e supporto del parallelismo. Cominciare a rendere gli studenti "utenti intelligenti" dei linguaggi di programmazione, cioè capaci di scegliere il paradigma più adatto al contesto applicativo dato, di sfruttare efficacemente le funzionalità offerte dai linguaggi e di apprendere rapidamente nuovi linguaggi. Il corso fornisce un trattamento approfondito del core di Java ed elementi di linguaggi funzionali.

CONTENUTI

Introduzione ai linguaggi di programmazione. Cenni storici. Richiami degli elementi informatica teorica rilevanti per il corso. Cenni ai paradigmi di programmazione. Compilazione e interpretazione dei linguaggi. Supporto a run-time e gestione della memoria. Modalità di passaggio dei parametri. Strutturazione dei dati e controllo dei tipi. Tipi elementari e user defined. Encapsulation: tipi di dato astratti, moduli, classi. Sistemi di tipo nei linguaggi ad oggetti: sottotipi ed ereditarietà; compatibilità tra tipi. Java: Costrutti di controllo e sistema di tipi in dettaglio. Tipi parametrici (programmazione generica). Strutturazione della computazione: gestione delle eccezioni. Gestione della memoria in Java (inclusi costruttori, stringhe, garbage collection e gestione dell'ambiente non locale in presenza di classi interne). Parallelismo in Java. Costrutti funzionali di base, con esempi in ML e/o in Python.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni.		

TODALITA DI LOAI IL							
L'esame si articola in prova	Scritta e orale	Scritta e orale X		Solo scritta		Solo orale	
In caso di prova scritta i quesiti sono	A risposta multipla	x	A risposta libera	х	Esercizi numerici		
Altro							

Object Orientation (DISATTIVATO DALL'A.A. 2025/2026)

TITOLO INSEGNAMENTO IN INGLESE Object Orientation

Docenti: Canale 1. Sergio Di Martino, Canale 2 Porfirio Tramontana

een	CELL		Anno di corso		Sem	estre	Lingua
SSD	CFU	1	II	III	1	П	Italiano
INF/01	6		х		х		х

Insegnamenti propedeutici previsti: Programmazione

OBIETTIVI FORMATIVI

Acquisizione delle competenze di base per la progettazione object-oriented attraverso la comprensione dei concetti di astrazione sui dati, di incapsulamento dell'informazione, di coesione e accoppiamento, e di riutilizzo del codice; comprensione delle differenze tra paradigma object-oriented e il paradigma procedurale, conoscenza del linguaggio java per la definizione di classi e per la promozione del riutilizzo del software capacità di applicare conoscenza e comprensione delle principali abilita (ossia la capacita di applicare le conoscenze acquisite) saranno: analisi di problemi, specifica dei requisiti e definizione di una strategia risolutiva con un approccio orientato agli oggetti, con la sua implementazione nel linguaggio java, garantendo il giusto equilibrio tra qualità ed efficienza del software.

CONTENUTI

La programmazione orientata agli oggetti; concetti di astrazione dei dati e di incapsulamento; Progettazione di classi. Concetti di coesione e accoppiamento; Ereditarietà e riuso; Interfacce, classi astratte e polimorfismo; UML: Class Diagrams e Sequence Diagrams; Introduzione a Java, alla JVM e al JDK; Oggetti, variabili, riferimenti; classi e metodi, costruttori, comunicazione fra oggetti, parametri espliciti e impliciti; il riferimento this; Tipi di dati fondamentali. Classi Object e String; Meccanismi di 'autoboxing' e 'unboxing'; Accenni di gestione delle Eccezioni; Le collezioni in Java: List e sue implementazioni. For generico (for each); Design pattern: Iterator, Observer, Strategy, Composite; Programmazione di interfacce grafiche ad eventi. Le Swing.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.			
MODALITÀ DI ESAME			
L'esame si articola in prova	Scritta e orale	Solo scritta X	Solo orale

In caso di prova scritta i quesiti sono	A risposta multipla	A risposta libera	x	Esercizi numerici	х
Altro	Progetto				

Sistemi Operativi I (DISATTIVATO DALL'A.A. 2025/2026)

TITOLO INSEGNAMENTO IN INGLESE Operating System I

Docenti: Canale 1. Walter Balzano, Canale 2. Alberto Finzi

SSD	CFU	Anno di corso			Semestre		
טפפ	CFU	1	н	Ш	1	П	Italiano
INF/01	9		х			х	х

Insegnamenti propedeutici previsti: Architettura degli Elaboratori

OBIETTIVI FORMATIVI

Il corso intende fornire una introduzione alla struttura e alle funzioni dei moderni Sistemi Operativi esaminandone i principi, le componenti fondamentali, le metodologie di progettazione e di sviluppo, gli algoritmi e gli strumenti di base. Particolari riferimenti riguardano il Sistema Operativo Unix ed implementazioni Linux, conoscenza delle metodologie usate per risolvere le problematiche tipiche della gestione delle risorse. Ulteriore finalità del corso è quella di fornire abilità di base nell'uso di una piattaforma a livello utente ed amministratore, principi di scripting e programmazione di Sistema.

PROGRAMMA

Introduzione ai Sistemi Operativi: Definizioni di strutture, architetture e componenti.

Gestione dei processi: Concetti, operazioni e comunicazioni sui processi; Definizioni di Thread; Gestione della CPU, criteri ed algoritmi di Scheduling e valutazione degli Algoritmi. Scheduling per sistemi di elaborazione in tempo reale. Sincronizzazione dei processi; Problema della sezione critica; Architetture di sincronizzazione; Semafori; Problemi tipici di sincronizzazione; Regioni critiche; Monitor. Stallo dei Processi: Rilevamento e ripristino da situazioni di stallo.

Gestione della memoria: Avvicendamento dei processi, assegnazione contigua della memoria; Paginazione; Segmentazione. La memoria virtuale, definizioni di paginazione e segmentazione. Interfaccia e realizzazione del file system, Concetto di file, metodi di accesso, condivisione e protezione di file. Realizzazione della directory, metodi di assegnazione, gestione dello spazio libero, efficienza e prestazioni.

Sistemi di I/O: Architetture e dispositivi di I/O; Interfaccia di I/O per le applicazioni; Sottosistema per l'I/O del nucleo; Trasformazione delle richieste di I/O in operazioni dei dispositivi; Prestazioni. Memoria secondaria e terziaria, struttura dei dischi, scheduling del disco, gestione dell'unità a disco, Gestione dell'area di avvicendamento; Strutture RAID; Connessione dei dischi; Strutture per la memorizzazione terziaria.

Cenni alle architetture distribuite riguardanti aspetti di strutture, di protezione e sicurezza.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

L'esame si articola in prova	Scritta e orale	х	Solo scritta		Solo orale	
In caso di prova scritta i quesiti sono	A risposta multipla	x	A risposta libera	x	Esercizi numerici	x
Altro						

Terzo Anno

Laboratorio di Sistemi Operativi (DISATTIVATO DALL'A.A. 2026/2027)

TITOLO INSEGNAMENTO IN INGLESE Operating Systems Laboratory

Docenti: Canale unico, Alessandra Rossi

66D	CELL		Anno di corso		Semestre		Lingua
SSD	CFU	1	Ш	III	1	Ш	Italiano
INF/01	8			х	х		х

Insegnamenti propedeutici previsti: Sistemi Operativi I, Algebra

OBIETTIVI FORMATIVI

Il corso si prefigge di fornire gli strumenti e le metodologie necessarie alla gestione di sistema ed allo sviluppo di applicazioni in ambiente Unix. Al termine del corso lo studente sarà in grado di: sfruttare appieno le potenzialità di scripting per la gestione del sistema; utilizzare le interfacce di programmazione standard e delle system call al sistema Unix; progettare e realizzare programmi multi-processo e/o multi-thread; sviluppare applicazioni di rete. Inoltre, il corso si prefigge di fornire le metodologie e gli strumenti necessari per lo sviluppo di applicazioni in ambiente Android con particolare focus all'interazione tra le applicazioni ed il sistema operativo. Al termine del corso lo studente avrà appreso le problematiche relative alla creazione ed alla gestione di activity in ambienti mobile, la loro interazione con il file system presente sul dispositivo, le metodologie e gli strumenti per realizzare applicazioni multi-thread e di rete.

CONTENUTI

La shell di Unix: comandi e programmazione; Shell/AWK Scripting; I/O di basso livello e chiamate di sistema per la gestione l'interazione con il file system; chiamate di sistema per la gestione dei processi; chiamate di sistema per la gestione di segnali, pipe e fifo; chiamate di sistema per la creazione, gestione e sincronizzazione di thread; La comunicazione su rete. Architetture client-server; primitive di comunicazione su rete; I socket TCP ed UDP. Le chiamate di sistema per la programmazione di rete; Creazione di server concorrenti. Introduzione ai sistemi Android; Il framework Android Studio; Struttura di un progetto Android; Il ciclo di vita di una activity; Creazione e gestione di activity; Interazione con il file system; Cenni all'utilizzo di SQLite; Connessione ad Internet; Applicazioni di rete; Background processing; Multi-threading; Gestione della sincronizzazione; Servizi; Fragments; Receiver in background.

MODALITÀ DIDATTICHE

Lezioni frontali, esercitazioni.

	L'esame si articola in prova	Scritta e orale	x	Solo scritta		Solo orale	
--	------------------------------	-----------------	---	--------------	--	------------	--

In caso di prova scritta i quesiti sono	A risposta multipla	A risposta libera	х	Esercizi numerici	
Altro	Sviluppo progetti				

Calcolo delle Probabilità e Statistica (DISATTIVATO DALL'A.A. 2025/2026)

TITOLO INSEGNAMENTO IN INGLESE Probability Theory and Statistics

Docenti: Canale unico. Marco Lops

SSD	CFU		Anno di corso		Sem	estre	Lingua
330	Cro	- 1	II	III	- 1	II	Italiano
MAT/06	9			x		х	х

Insegnamenti propedeutici previsti: Algebra, Analisi matematica I

OBIETTIVI FORMATIVI

L'obiettivo specifico di apprendimento dell'insegnamento è quello dell'acquisizione dei principi e metodi di base del calcolo delle probabilità e della statistica sia descrittiva che inferenziale. L'approccio didattico che si intende utilizzare è prevalentemente quello euristico, in quanto il collocare i contenuti in semplici contesti applicativi può facilitare gli studenti nell'apprendimento del pensiero probabilistico, senza tuttavia tralasciare le dimostrazioni di alcuni risultati teorici alla base della disciplina. Un ulteriore obiettivo è quello di fornire un'iniziale indicazione di come tali risultati teorici del Calcolo delle Probabilità trovino naturale e piena applicazione nella costruzione dei metodi statistici.

CONTENUTI

Il problema del contare. Le varie definizioni di probabilità di un evento. Probabilità combinatorie. Esperimento casuale e spazio campione ad esso associato. Il concetto di indipendenza e probabilità condizionata. Il teorema di Bayes. Il concetto di variabile aleatoria, funzione di distribuzione e classificazione. Alcuni modelli notevoli di variabili aleatorie. Funzione di variabile aleatoria e generatori di numeri aleatori. Estensione al caso a più dimensioni. Momenti di una variabile aleatoria. Disuguaglianze notevoli. Convergenze e teoremi fondamentali. Il concetto di campione casuale semplice. Statistiche; statistiche campionarie; statistiche d'ordine. Campioni da genitrici normali. Stima puntuale. Stimatori e relative proprietà. Metodi di costruzione degli stimatori — Cenni alla stima intervallare e ai test d'ipotesi.

MODALITÀ DIDATTICHE

Lezioni frontali. Allo scopo di verificare l'effettiva acquisizione delle conoscenze trasmesse, sono stimolati interventi, riflessioni e richieste di chiarimenti da parte degli studenti.

L'esame si articola in prova	Scritta e orale	Scritta e orale			Solo orale			
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera		Esercizi numerici			
Altro	Nella prima parte del colloquio sarà richiesta la risoluzione di un quesito a carattere applicativo; lo studente, in maniera autonoma o opportunamente guidato, dovrà dimostrare di sapere inquadrare la questione tra gli argomenti del programma, di saper scegliere le							

opportune tecniche risolutive e di essere in grado di interpretare correttamente i risultati ottenuti. Ulteriori richieste di carattere teorico tenderanno ad accertare, oltre alla conoscenza dei contenuti presenti nel programma, la consapevolezza dell'impostazione assiomatica nonché il raggiungimento di una sufficiente padronanza del relativo linguaggio.

Ingegneria del Software Modulo A (DISATTIVATO DALL'A.A. 2026/2027)

TITOLO INSEGNAMENTO IN INGLESE Software Engineering (Mod. A)

Docenti: Canale unico. Sergio Di Martino

CCD	CELL		Anno di corso			estre	Lingua
SSD	CFU	T.	II	III	T.	II	Italiano
INF/01	5			х	х		х

Insegnamenti propedeutici previsti: Object Orientation, Algebra

OBIETTIVI FORMATIVI

Ingegneria del software, dei processi di ingegneria del software e delle relative fasi, attività e deliverable (programming in the large); definizione, proprietà e analisi di modelli; metodi di analisi e progettazione (anche formali) e importanza dei linguaggi di modellazione del software per la comunicazione tra diversi attori coinvolti in un processo di ingegneria del software.

CONTENUTI

Introduzione all'Ingegneria del Software, concetti di prodotto software, attributi di qualità del software; L'Ingegneria dei Requisiti. Analisi e specifica dei Requisiti, Il documento dei Requisiti Software; UML: Activity Diagrams, Statecharts, Component Diagram, OCL; System Design e Architetture Software (3 Livelli, MVC, SOA, Cloud); Project Management, WBS, Diagrammi di Gantt e Pert; Versioning di Prodotti Software. SVN; Verifica e Validazione. Review, Inspection, Livelli di Testing, jUnit, Strategie Black Box e White Box, GUI Testing; Modelli di Processo. Il processo a cascata, i processi Agili, SCRUM.

MODALITÀ DIDATTICHE Lezioni frontali. Esercitazioni. MODALITÀ DI ESAME L'esame si articola in prova Scritta e orale Solo scritta X Solo orale

					_		
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	х		Esercizi numerici	x
Altro	Progetto obbligatori	o di g	ruppo				

Ingegneria del Software Modulo B (DISATTIVATO DALL'A.A. 2026/2027)

TITOLO INSEGNAMENTO IN INGLESE Software Engineering (Mod. B)

Docenti: Canale unico. Luigi Libero Lucio Starace

SSD	CFU		Anno di corso			estre	Lingua
330	CFU	1	II	III	1	II	Italiano
INF/01	5			х	х		х

Insegnamenti propedeutici previsti: Object Orientation, Algebra

OBIETTIVI FORMATIVI

User centered Design; metriche di usabilità delle interfacce, anche in ambito multimodale; definizione, proprietà e analisi di architetture software; concetti e tecniche di verifica e validazione del software.

CONTENUTI

Altro

Sistemi interattivi e interfacce d'uso; User Centered Design; Le regole di Usabilità di Shneiderman; I Mock-Up; Usabilità e sua valutazione; Misure di carico cognitivo e complessità delle interfacce; Grafica e metafore di rappresentazione per dati multidimensionali, Interazione multimodale.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.					
MODALITÀ DI ESAME					
L'esame si articola in prova	Scritta e orale	Solo scritta	x	Solo orale	
n caso di prova scritta i quesiti sono	A risposta multipla	A risposta libera	x	Esercizi numerici	x

Progetto obbligatorio di gruppo

Reti di Calcolatori I (DISATTIVATO DALL'A.A. 2026/2027)

TITOLO INSEGNAMENTO IN INGLESE Computer Network I

Docenti: Canale unico. Riccardo Caccavale

660	CELL		Anno di corso		Sem	estre	Lingua
SSD	CFU	1	II	III	1	II	Italiano
INF/01	6			х	х		х

Insegnamenti propedeutici previsti: Sistemi operativi I, Algebra

OBIETTIVI FORMATIVI

L'obiettivo del Corso è quello di introdurre i concetti fondamentali delle moderne reti di calcolatori e fornire allo studente le necessarie conoscenze per affrontare l'analisi e lo studio di una rete distribuita di calcolatori. In particolare, saranno presentate le caratteristiche generali delle reti, la loro topologia, l'architettura ed i principali protocolli utilizzati per la trasmissione delle informazioni tra calcolatori, con particolare riferimento ai protocolli della suite TCP/IP ed ai moderni apparati attivi di rete.

CONTENUTI

Introduzione alle reti di calcolatori – Scopi, applicazioni, evoluzione storica, caratteristiche e struttura a livelli.

Il modello ISO/OSI – Il modello di riferimento, protocolli, interfacce, principali architetture di rete, le primitive.

Il livello fisico - Mezzi trasmissivi elettrici e ottici. Codifica e decodifica del segnale. Tecniche di multiplazione. Elementi di Cablaggio strutturato. Reti in rame e fibra. Repeater.

Il livello Data Link- Il modello di riferimento IEEE 802. La rete Ethernet e lo standard IEEE 802.3: metodo di accesso CSMA/CD. Apparati attivi: bridge, switch L3. Lo standard 802.11: metodo di accesso CSMA/CA.

Il livello di rete – I protocolli della suite TCP/IP. Repeater, bridge, switch L3, router, gateway). Tecniche di instradamento, architettura di un router, algoritmi di routing.

Il livello di trasporto - Servizi forniti, indirizzi del livello di trasporto, le socket. I protocolli UDP e TCP.

Il livello delle applicazioni: Applicazioni di Rete: Domain Name Server (DNS). Protocolli del livello applicativo: SMTP, POP3, IMAP, SNMP, TELNET, FTP, TFTP, DHCP, NAT.

Progetto di una rete di calcolatori. La progettazione di una rete LAN e WAN. 4

Sicurezza nelle reti: la sicurezza nella posta: SSL, TSL; nell'autenticazione: 802.1X, EAP; nelle sessioni interattive: SSH. 4

MODALITÀ DIDATTICHE

Il corso prevede delle lezioni frontali in aula, delle esercitazioni in aula svolte dal docente, delle simulazioni di esame scritto. Numerosi esempi reali di reti e di configurazioni di apparati di rete. Visita al Data Center SCoPE/RECAS e analisi della sua rete.

L'esame si articola in prova	Scritta e orale	Scritta e orale X Solo scritta				
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	x	Esercizi numerici	
Altro	2 esercizi, 1 di teor	a ed 1	1 di progettazione ret	е		

Esami a Scelta Vincolata (Tab. A)

Linguaggi di Programmazione II (DISATTIVATO DALL'A.A. 2026/2027)

TITOLO INSEGNAMENTO IN INGLESE Programming Languages II

Docenti: Canale unico. Marco Faella

SSD	CFU	Anno di corso							estre	Lingua
330	CFU	1	Ш	Ш	1	Ш	Italiano			
INF/01	6		x			x	x			

Insegnamenti propedeutici previsti: Linguaggi di Programmazione I, Object Orientation, Algebra

OBIETTIVI FORMATIVI

Il corso intende esporre gli studenti ad un'ampia gamma di funzionalità dei moderni linguaggi di programmazione, approfondendo ed espandendo le tematiche affrontate dal corso di Linguaggi di Programmazione I, con particolare riferimento ai linguaggi orientati agli oggetti. Alla fine del corso, gli studenti saranno in grado di utilizzare i costrutti linguistici più appropriati per raggiungere gli obiettivi di chiarezza, manutenibilità, robustezza ed efficienza dei manufatti software.

PROGRAMMA

- 1. Richiami di linguaggi Java e C++.
- 2. Classi interne, locali e anonime.
- 3. Tipi enumerati.
- 4. Algoritmi di risoluzione del binding dinamico.
- 5. Operazioni di base su oggetti: confronto ordinale e di uguaglianza, copia.
- 6. Polimorfismo parametrico e sue implementazioni: i generics e i template.
- 7. Programmare con collezioni ed iteratori.
- 8. Programmazione multi-thread: comunicazione e sincronizzazione tra thread.
- 9. Riflessione.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni.		

L'esame si articola in prova	Scritta e orale	x	Solo scritta		Solo orale	
In caso di prova scritta i quesiti sono	A risposta multipla	х	A risposta libera	x	Esercizi numerici	

Altro	

Tecnologie Web (DISATTIVATO DALL'A.A. 2026/2027)

TITOLO INSEGNAMENTO IN INGLESE Web Technologies

Docenti: Canale unico. Luigi Libero Lucio Starace

SSD	CFU		Anno di corso		Sem	estre	Lingua
330	CFO	1	Ш	Ш	1	П	Italiano
INF/01	6			х		х	х

Insegnamenti propedeutici previsti: Linguaggi di Programmazione I, Object Orientation, Algebra

OBIETTIVI FORMATIVI

Scopo del corso è di fornire concetti e tecniche per la progettazione di sistemi web. Alla fine del corso, lo studente dovrebbe quindi essere in grado di progettare un'applicazione web scegliendo gli strumenti più adatti e di seguire l'evoluzione delle tecnologie legate a questo campo di applicazione.

CONTENUTI

- Il World Wide Web: Documenti e Ipertesti; il protocollo HTTP.
- > HTML (living standard): Elementi fondamentali; URLs; Form. Strumenti per sviluppatori nei moderni Web Browser:
- CSS: Nozioni di base; Selettori; l'algoritmo Cascade; Ereditarietà; Layout (Flexbox, Grid); Media Query; Fondamenti di Responsive Design;
- JavaScript (ES6+): Nozioni di base del linguaggio; ECMAScript 6 e il JavaScript "moderno"; Variabili; Funzioni, Oggetti; Strutture dati; Classi; Gestione di errori; Moduli; JavaScript in un Web Browser; Manipolazione del DOM; Web Storage API; Asincronismo (Promise); Richieste di Rete (fetch API);
- > Introduzione alla programmazione server-side: nozioni di base, esempi con CGI e PHP;
- JavaScript in un ambiente di esecuzione server: Node.js; npm; debugging; Introduzione al session tracking;
- Frameworks: Introduzione ai Frameworks; Principio dell'Inversion of Control; Il framework Express; Concetti di base in Express: Routes, Middleware; Templating (con Pug); Esempi pratici; Esempio di utilizzo di un ORM (Sequelize); Vantaggi e Svantaggi di un ORM.
- > API REST: Introduzione alle API REST; Motivazioni; Autenticazione con token JWT.
- Introduzione al concetto di Content Management System (CMS); Esempio di utilizzo del CMS WordPress; CMS Headless; Esempio di utilizzo del CMS Headless Strapi; Cenni di base di GraphQL.
- > TypeScript: Nozioni di base; Transpiling verso codice JavaScript; Downleveling; Dichiarazione di tipi; Inferenza automatica di tipi; Introduzione al concetto di Tipizzazione Strutturale; Cenni di tipi generici; Altri tipi: never, any, unknown, void; Esempi pratici;
- Front-end Tooling: Preprocessor e Postprocessor di CSS; Sass (variabili, mixin, nesting, control flow, strutture dati di base); Esempi con Sass; Framework CSS; Bundling; Tree-shaking; Minification; Esempi utilizzando il tool Vite;
- Single Page Applications (SPA): Concetti di base; Vantaggi e Svantaggi rispetto alle applicazioni web tradizionali; Sfide nell'implementazione di SPA (routing, gestione dello stato, ri-utilizzo dei componenti); Esempio di implementazione di una SPA utilizzando soltanto JavaScript.

- Angular: Il framework front-end Angular per l'implementazione di SPA; Nozioni di base; Strumenti per sviluppatori; Componenti; Routing; Forms; Services; Dependency Injection; Route Guards; HttpClient; Interceptors; Esempi di implementazione di SPA con Angular.
- Web Application Security: Nozioni di base; Sicurezza a livello di rete e di applicazione; Principali tipi di attacchi informatici ad applicazioni web: Cross-site Scripting (XSS), Cross-site Request Forgery (CSRF o XSRF), SQL Injection; Attacchi alla sessione (Session hijacking); Validazione inadeguata dei dati in input; Tecniche per mitigare le vulnerabilità; Esempi pratici di exploit di vulnerabilità su applicazioni web di esempio;
- > Testing di Applicazioni Web: testing di unità; nozioni di base su testing end-to-end; fragilità; flakyness; Esempi con il tool Playwright

	M()D	ALIT	'A D	IDA	TTI	CHE
--	----	----	------	------	-----	-----	-----

Lezioni frontali.						
MATERIALE DIDATTICO						
MODALITÀ DI ESAME						
L'esame si articola in prova	Scritta e orale	х	Solo scritta		Solo orale	
						ı
In caso di prova scritta i quesiti sono	A risposta multipla	х	A risposta libera	x	Esercizi numerici	
Altro	Progetto consisten	te ne	llo sviluppo di una m	oderr	na applicazione	

Esami a Scelta Libera (Tab. B)

Algorithm design

TITOLO INSEGNAMENTO IN INGLESE Algorithm design

Docenti: Massimo Benerecetti

SSD CFU			Anno di corso		Sem	Lingua	
220	CFO	1	П	III	1	П	Italiano
INF/01	6		х			х	

Insegnamenti propedeutici previsti: Algoritmi e strutture dati I, Laboratorio di Algoritmi e Strutture Dati

OBIETTIVI FORMATIVI

Il corso intende fornire un'introduzione alle tecniche avanzate di progettazione degli algoritmi, alla complessità computazionale e alla trattabilità dei problemi. Vengono, in particolare, presentate le principali tecniche di dimostrazione di correttezza, esaminate le tecniche di progettazione greedy e di programmazione dinamica, con applicazioni alla soluzione di vari problemi di ottimizzazione, di compressione dei dati e problemi su grafi pesati. Vengono introdotte le classi di complessità P e NP e il concetto di NP-completezza e di riduzione tra problemi. Vengono infine presentate tecniche di progettazione ed analisi di algoritmi approssimati e di algoritmi randomizzati.

CONTENUTI

Il problema della correttezza degli algoritmi: dimostrazioni per induzione, dimostrazioni di correttezza di algoritmi ricorsivi.

Tecniche di progettazione di algoritmi: introduzione agli algoritmi greedy ed alla programmazione dinamica per la soluzione di problemi di ottimizzazione (ad es., problema dello zaino intero e frazionario, percorsi minimi su grafi pesati, i codici di Huffman, problemi di scheduling). Introduzione alla Teoria della Complessità: problemi trattabili e non trattabili, le principali classi di complessità (P e NP), il concetto di riduzione polinomiale tra problemi e il concetto di NP-completezza, esempi di problemi NPcompleti e dimostrazioni di NP-completezza. Introduzione all'intrattabilita' computazionale. Introduzione agli algoritmi approssimati; fattore di approssimazione; esempi di algoritmi approssimati per problemi du grafi. Introduzione agli algoritmi randomizzati. Progettazione ed analisi di algoritmi randomizzati per problemi di scheduling e problemi su grafi.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni		

	L'esame si articola in prova	Scritta e orale	x		Solo scritta		Solo orale	
--	------------------------------	-----------------	---	--	--------------	--	------------	--

In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	x	Esercizi numerici	
Altro						

Calcolo Numerico

TITOLO INSEGNAMENTO IN INGLESE Numerical Analysis

Docenti: Canale unico Luisa D'Amore

SSD	CFU		Anno di corso		Sem	Lingua		
330	CFU	1	II	Ш	- 1	П	Italiano	
MAT/08	6		x		x		х	

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Il corso rappresenta una introduzione ai concetti fondamentali della matematica numerica per la risoluzione di problemi matematici che sono modelli di situazioni reali (calcolo scientifico) e si pone, pertanto, i seguenti obiettivi: analisi dei principali metodi che sono alla base della risoluzione numerica di alcune classi di problemi con particolare riguardo alla stabilità e all'efficienza; progettazione di algoritmi risolutivi efficienti ed accurati; sviluppo di tecniche implementative, analisi degli errori e testing.

CONTENUTI

Approccio computazionale alla risoluzione di un problema. Sorgenti di errore. Analisi degli errori: Forward e backward. L'aritmetica standard IEEE. Stabilità di un algoritmo numerico. Condizionamento di un problema matematico. Indice di condizionamento. Calcolo matriciale: metodi diretti per matrici piene e strutturate. Metodo di eliminazione di Gauss. Algoritmo di fattorizzazione LU. Stabilità dell'algoritmo di eliminazione di Gauss, strategie di pivoting. Attività di laboratorio.

MODALITÀ DIDATTICHE

Lezioni frontali ed attività di laboratorio.

MODALITÀ DI ESAME						
L'esame si articola in prova	Scritta e orale X	(Solo scritta		Solo orale	
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	x	Esercizi numerici	x
Altro			•			

Diritto dell'Informatica

TITOLO INSEGNAMENTO IN INGLESE Legal Informatics

Docenti: Canale unico Lucio Franzese

SSD	CFU		Anno di corso		Sem	Lingua		
330	CFO	- 1	II	III	1	II	Italiano	
IUS/20	6		х			х	х	

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Obiettivo del corso è quello di fornire allo studente consapevolezza dell'esistenza di problemi giuridico/normativi legati alle nuove tecnologie, nonché strumenti conoscitivi per comprendere meglio il diritto d'autore, gestire progetti e attività professionali con un maggiore grado di autonomia, sviluppare e utilizzare tecnologie informatiche in modo conforme alla legge, ed avere consapevolezza degli aspetti giuridici in merito alla privacy in sistemi informatici.

CONTENUTI Da definire **MODALITÀ DIDATTICHE** Lezioni frontali. **MODALITÀ DI ESAME** L'esame si articola in prova Scritta e orale X Solo scritta Solo orale Esercizi In caso di prova scritta i quesiti sono A risposta multipla A risposta libera numerici Altro

Computer Forensics

TITOLO INSEGNAMENTO IN INGLESE Computer Forensics

Docenti: Canale unico. Lorenzo Laurato

SSD	CFU	An	no di corso (I, II o	III)	Semest	Lingua		
330	CFU	I	II	III	I	II	Italiano	
INF/01	6		Х			Х		

Prerequisiti: Sistemi Operativi, Reti di calcolatori I

OBIETTIVI FORMATIVI

Il corso si pone l'obiettivo di far acquisire agli studenti le competenze di base nell'ambito della Computer Forensics su aspetti teorici, tecnici, metodologie e regole giuridiche alle quali deve attenersi chi opera nel settore, con illustrazione delle tecniche paradigmatiche di indagine scientifica laddove è possibile ricorrere a prove in formato digitale sia per i casi di reati strettamente informatici, sia per gli altri tipi di illeciti in cui il dato informatico può rappresentare una prova, e relativa declinazione nel contesto normativo italiano.

PROGRAMMA

Introduzione all'informatica forense. Elementi, ruolo, criticità e approccio metodologico dell'informatica forense. Normative e aspetti pragmatici relativi alla costruzione della prova. Aspetti legali e tecnologici relativi all'attendibilità del dato informatico e al trattamento del reperto informatico - nello specifico la disk forensics, e il trattamento dei file systems per la corretta acquisizione e la ricostruzione di informazioni. Strumenti Hardware e Software utilizzati nella digital forensics, ivi compresi la network forensics, la mobile forensics e l'embedded forensics. Metodologie per l'acquisizione di dati crittografati.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni.		

L'esame si articola in prova	Scritta e orale	Scritta e orale X			Solo orale
In caso di prova scritta i quesiti sono (*)	A risposta multipla	x	A risposta libera	х	Esercizi numerici
Altro					

Economia e Organizzazione Aziendale

TITOLO INSEGNAMENTO IN INGLESE Economics

Docenti: Da definire

SSD	CFU		Anno di corso		Sem	Lingua		
330	CFO	1	II	III	1	П	Italiano	
ING-IND/35	6		х			х	x	

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Il corso ha la finalità di introdurre gli studenti del Corso di Laurea in Informatica allo studio delle problematiche economiche, organizzative e gestionali delle imprese. In particolare, relativamente alle problematiche economiche, vengono forniti gli elementi relativi ai principali problemi decisionali che l'imprenditore deve affrontare (definizione del prezzo e dei volumi di vendita, dimensione dell'impresa, ottimizzazione dei costi di produzione). La conoscenza del funzionamento delle principali grandezze economiche che caratterizzano un sistema economico attraverso lo studio della Macroeconomia proietta lo studente nella conoscenza di una dimensione economica in cui l'impresa si trova ad operare. Relativamente alla organizzazione aziendale compito principale è quello di fornire allo studente, nello specifico settore del software, modelli organizzativi che caratterizzano le piccole e medie imprese.

CONTENUTI

La prima parte del corso fornisce la conoscenza degli elementi di Microeconomia quali la domanda individuale, la domanda di mercato, la tecnologia, la funzione di produzione e dei costi dell'impresa, il funzionamento del mercato nelle sue diverse forme. La seconda parte del corso fornisce la conoscenza di un modello semplificato di funzionamento di un sistema economico attraverso la conoscenza dei principali elementi che caratterizzano un sistema economico (il Prodotto Nazionale, i consumi, il risparmio, l'investimento, la moneta, l'inflazione, ecc.). La terza parte del corso fornisce la conoscenza del funzionamento di una impresa sin dalla sua costituzione anche attraverso la lettura ed interpretazione dei documenti contabili e fornirà un ulteriore arricchimento del funzionamento dei meccanismi che regolano la nascita, lo sviluppo e la decadenza delle imprese. Nel corso delle lezioni vengono proposte applicazioni ed esemplificazioni dei temi trattati.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.		

L'esame si articola in prova	Scritta e orale	х	Solo scritta		Solo orale	

In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	x	Esercizi numerici	
Altro						

Istituzioni di Matematica II

TITOLO INSEGNAMENTO IN INGLESE Calculus II

Mutuato dal Corso di Laurea in Ottica e Optometria

SSD	CELL		Anno di corso		Sem	estre	Lingua
330	CFU	1	П	III	1	П	Italiano
MAT/05	6		x		х		х

Insegnamenti propedeutici previsti: Analisi Matematica I

OBIETTIVI FORMATIVI

Il corso si prefigge lo scopo di introdurre gli studenti ai problemi di approssimazione di una funzione regolare mediante serie di potenze, al calcolo differenziale ed integrale per le funzioni di più variabili ed al concetto di modello matematico con particolare attenzione alle equazioni differenziali lineari.

CONTENUTI

Successioni e Serie di funzioni – Convergenza uniforme. Proprietà delle successioni e delle serie uniformemente convergenti. Serie totalmente convergenti. Serie di potenze: raggio di convergenza. Polinomi di Taylor: formula col resto in forma di Peano di Lagrange. Sviluppabilità in serie di Taylor: sviluppi notevoli. Cenni sulla funzione esponenziale nel campo complesso: formule di Eulero. Calcolo Differenziale – Funzioni continue, funzioni differenziabili: derivate parziali e derivate direzionali. Teorema del differenziale totale e significato geometrico. Formula di Taylor diordine 2. Problemi di estremo libero: condizioni necessarie e condizioni sufficienti. Equazioni Differenziali – Il problema di Cauchy: Teoremi di esistenza ed unicità locale e globale. Equazioni del primo ordine a variabili separabili. Equazioni di Bernoulli. Equazioni differenziali lineari del primo e secondo ordine. Equazioni differenziali lineari del secondo ordine a coefficienti costanti, termini noti di tipo particolare. Metodo della variazione delle costanti arbitrarie. Cenni sui problemi ai limiti. Integrazione multipla – Integrale secondo Riemann. Formule di riduzione per integrali doppi e tripli. Cambiamenti di variabili in integrali doppi e tripli: il caso del cambiamento a coordinate polari.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.						
MODALITÀ DI ESAME						
L'esame si articola in prova	Scritta e orale	х	Solo scritta		Solo orale	
	·		•			
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	x	Esercizi numerici	x
Altro						

Logics for computer science

TITOLO INSEGNAMENTO IN INGLESE Logics for computer science

Docenti: Canale unico. Massimo Benerecetti

SSD	CFU		Anno di corso		Sem	estre	Lingua
330	CFU	1	Ш	Ш	III I	Ш	Italiano
M-FIL/02	6		х		х		х

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Acquisire una conoscenza delle principali proprietà sintattiche e semantiche della logica classica proposizionale e della logica del primo ordine. Acquisire familiarità con i principali sistemi deduttivi della logica classica che sono di interesse per l'informatica. Acquisire la capacità di formalizzare enunciati dichiarativi e problemi nel linguaggio della logica classica, nonché di verificare la correttezza di un ragionamento informale.

CONTENUTI

Logica proposizionale: sintassi e semantica. Forme normali congiuntiva e disgiuntiva. La deduzione naturale. Calcolo dei sequenti. Tableaux analitici. Risoluzione, procedura di Davis-Putnam e metodo refutazionale. Correttezza, completezza e compattezza della logica proposizionale. Logica del primo ordine: elementi di sintassi e di semantica tarskiana. Tableaux analitici. Universo di Herbrand, clausole ground e metodo refutazionale. Formalizzazione e verifica formale di ragionamenti informali. Forma normale prenessa e skolemizzazione. Correttezza, completezza e compattezza della logica del primo ordine. Teorema di Skolem-Lowenheim e modelli non-standard. Cenni ai teoremi di incompletezza di Goedel. Dimostrabilità, verità e insiemi ricorsivamente enumerabili.

MODALITÀ DIDATTICHE

Lezioni frontali ad argomento teorico ed esercitazioni per la soluzione di esercizi e problemi elementari di logica.

L'esame si articola in prova	Scritta e orale	X	Solo scritta		Solo orale	
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	x	Esercizi numerici	Х
Altro						

Operating systems for mobile, cloud and IoT

TITOLO INSEGNAMENTO IN INGLESE Operating systems for mobile, cloud and IoT

Docenti: Canale unico. Porfirio Tramontana

SSD	CFU		Anno di corso		Sem	estre	Lingua
330	CFU	1	Ш	Ш		Italiano	
INF/01	6		х			х	

Insegnamenti propedeutici previsti: Sistemi Operativi I

OBIETTIVI FORMATIVI

Il corso si pone come obbiettivo principale quello di analizzare in modo approfondito e dettagliato gli algoritmi e le strutture dati implementati in un sistema operativo (Linux 2.6). In secondo luogo esso affronta le stesse problematiche, in contesti differenti, quali i dispositivi mobile ed il Cloud.

CONTENUTI

Il corso di Sistemi Operativi II ha una duplice finalità. In primo luogo, esso intende completare lo studio dei sistemi operativi tradizionali affrontati nel corso di Sistemi Operativi 1, approfondendo alcuni concetti come la gestione della memoria, dei processi e degli interrupt in un sistema operativo specifico, ossia Linux con kernel 2.6. D'altro canto, approfondisce i medesimi aspetti nel contesto dei sistemi operativi mobile con particolare attenzione a MAC iOS e Android. L'ultima parte del corso è invece dedicata all'approfondimento di tematiche legate ai sistemi operativi realtime e Cloud. Nello specifico, i principali temi affrontati riguardano: 1) I Sistemi Operativi Open-Source Linux OS, 2) La Gestione della Memoria in Linux, 3) La Gestione dei Processi in Linux, 4) Lo Scheduling dei Processi, 5) I Processi e la Memoria, 6) Il Virtual File Sistem, 7) I sistemi Grid, Cloud e WebOS, 8) Dispositivi e Sistemi Mobile, 9) Symbian OS, 10) Android OS, 11) Mac iOS, 12) La sicurezza nei sistemi operativi mobile (SELinux vs. SEAndroid), 13) Accesso sicuro ad un dispositivo mobile e/o tramite un dispositivo mobile, 14) I sistemi operativi Real-time.

MODALITÀ DIDATTICHE Lezioni frontali. MODALITÀ DI ESAME L'esame si articola in prova Scritta e orale Solo scritta Solo orale X In caso di prova scritta i quesiti sono A risposta multipla A risposta libera Esercizi numerici Altro

Parallel and Distributed Computing

TITOLO INSEGNAMENTO IN INGLESE Parallel and Distributed Computing

Docenti: Canale unico. Giuliano Laccetti

SSD	CFU		Anno di corso		Sem	Lingua	
330	CFU	1	II	III	1	l II	Italiano
INF/01	6		x		х		x

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Fornire idee di base, metodologie, strumenti software per lo sviluppo di algoritmi in ambiente di calcolo paralleli e/o distribuiti ad alte prestazioni. Parte integrante del corso è l'attività di laboratorio.

CONTENUTI

Concetto di "parallelismo" e di "alte prestazioni". I supercomputer. Classificazione e principali caratteristiche funzionali delle architetture parallele (classificazione di Flynn, rivista e aggiornata). Parametri di valutazione delle prestazioni degli algoritmi paralleli. I parametri classici di SpeedUp ed Efficiency. Metodologie per lo sviluppo di algoritmi paralleli e loro dipendenza dall'architettura. Esempi di progettazione e implementazione di algoritmi su architetture di tipo MIMD distributed memory (uso di message programming; la libreria MPI) e di tipo MIMD shared memory (l'esempio dei multicore; condivisione di memoria; la libreria OpenMP). Parametri di valutazione e scalabilità degli algoritmi paralleli. SpeedUp scalato ed Efficiency scalata. Il bilanciamento del Carico. Algoritmi tolleranti alla latenza e ai guasti. I/O parallelo. Algoritmi di base in ambiente parallelo e distribuito: ordinamenti, calcolo matriciale.

MODALITÀ DIDATTICHE

Parte integrante del corso sono le attività di laboratorio. Durante il corso, presentazione a scadenza fissata d 2-3 miniprogetti, da realizzare in ambiente MPI e/o OpenMP; la presentazione in tempo utile (e la sufficienza della qualità del lavoro) di tali miniprogetti, esonera gli studenti dalla prova d'esame al calcolatore.

L'esame si articola in prova	Scritta e orale X		Solo scritta		Solo orale	
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	x	Esercizi numerici	x
Altro	Sviluppo di progetti d	durar	te il corso; Prova a	l calc	olatore	

Ricerca Operativa

TITOLO INSEGNAMENTO IN INGLESE Operations Research

Docenti: Canale unico. Paola Festa

			Anno di corso		Sem	estre	Lingua
SSD	CFU	1	=	Ш	1	Ш	Italiano
MAT/09	6		х		х		Х

Insegnamenti propedeutici previsti: Algoritmi e strutture dati I

OBIETTIVI FORMATIVI

L'insegnamento si prefigge quale obiettivo principale l'introduzione degli studenti all'uso dei modelli di programmazione matematica ed in particolare ai modelli di ottimizzazione lineare (sia continui che a variabili intere) ed alle loro applicazioni nei campi della logistica, dei servizi e della produzione industriale. L'impostazione metodologica del Corso, inoltre, punta al conseguimento dei seguenti ulteriori obiettivi intermedi:

capacità di formalizzazione dei modelli di ottimizzazione per problemi di logistica, organizza-zione, pianificazione, scheduling, trasporto, flusso su reti e problemi su grafi ed alberi;

conoscenza della teoria e dei metodi di ottimizzazione lineare continua, di ottimizzazione lineare discreta e di ottimizzazione su grafi, alberi e reti di flusso;

capacità di utilizzazione dei modelli matematici dei classici problemi di ottimizzazione e dei relativi algoritmi di risoluzione nei campi della Pianificazione della Produzione, della Localizzazione, della Gestione delle Scorte e della Logistica.

CONTENUTI

Problemi di Programmazione Lineare e Metodo del Simplesso. Definizione e classificazione dei problemi di ottimizzazione e dei problemi di decisione e classificazione dei relativi metodi risolutivi (metodi esatti, metodi di approssimazione e metodi euristici). Programmazione Lineare (PL): il Metodo del Simplesso. Problemi di Programmazione Lineare Intera (1 credito) Metodi esatti per la risoluzione dei problemi di Programmazione Lineare Intera (Branch & Bound; piani di taglio; programmazione dinamica). Esempi di problemi di PLI con matrice dei vincoli uni-modulare: il problema del trasporto ed il problema dell'assegnamento. Problemi dello Zaino. Un algoritmo Branch and Bound per il problema dello Zaino 0/1; un algoritmo greedy per il problema dello Zaino Frazionario; due algoritmi di Programmazione Dinamica per il problema dello Zaino 0/1. Problemi di Ottimizzazione su grafi ed alberi: Vertex Cover ed Albero di Copertura Minimo. Il problema del Vertex Cover: un algoritmo 2-approssimato per il problema del Vertex Cover. Il problema dell'albero di copertura di un grafo a costo minimo (MST): l'algoritmo di Kruskal. Problemi di Ottimizzazione su grafi ed alberi: Problemi di Cammino Minimo. Cammini in un grafo orientato: il problema della raggiungibilità (visita in ampiezza; visita in profondità). Il problema dei cammini minimi: l'algoritmo di Dijkstra; l'algoritmo di Floyd e Warshall. Problemi di Ottimizzazione su grafi ed alberi: Pianificazione di un Progetto e Problema del Massimo Flusso. Pianificazione di un progetto: il Metodo CPM. Problemi di flusso su reti: il problema del massimo flusso; teorema max-flow min-cut; algoritmo di Ford-Fulkerson.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.

L'esame si articola in prova	Scritta e orale	X	Solo scritta			Solo orale	
	1			1	ı		
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera	x		Esercizi numerici	x
Altro							

Scientific Computing

TITOLO INSEGNAMENTO IN INGLESE Scientific Computing

Docenti: Canale unico. Eleonora Messina

SSD	CELL	Anno di corso				Semestre			
330	CFO	1	II	III I	П	Italiano			
MAT/08	6		x		x		x		

Insegnamenti propedeutici previsti: nessuno

OBIETTIVI FORMATIVI

Approfondimento delle problematiche legate allo sviluppo, implementazione ed analisi degli algoritmi numerici per la risoluzione di problemi significativi del mondo reale. Lo studente sarà in grado di: analizzare e confrontare i metodi in base al diverso problema applicativo da risolvere; interpretare i risultati computazionali anche in relazione alle proprietà di consistenza, convergenza e stabilità; risolvere modelli matematici di problemi della scienza e dell'ingegneria scegliendo metodi numerici appropriati, mediante l'implementazione degli algoritmi in un opportuno ambiente di calcolo e/o l'uso di librerie di software scientifico.

CONTENUTI

Sistemi lineari: fattorizzazione di matrici con speciali strutture (simmetriche definite positive, a banda, sparse) e risoluzione. Problemi di minimi quadrati lineari: risoluzione delle equazioni normali. Metodi iterativi per sistemi lineari: metodi stazionari, metodo del gradiente coniugato. Equazioni e sistemi non lineari: il metodo delle iterazioni a punto fisso, il metodo di Newton e le sue varianti. Modelli matematici ed equazioni differenziali ordinarie. Soluzione numerica di problemi ai valori iniziali, con metodi ad un passo, e di problemi ai limiti, con metodi alle differenze finite. Esempi ed applicazioni.

MODALITÀ DIDATTICHE

Lezioni frontali ed esercitazioni in laboratorio

L'esame si articola in prova	Scritta e orale		Solo scritta		Solo orale	Х	
		_					
In caso di prova scritta i quesiti sono	A risposta multipla		A risposta libera		Esercizi numerici		
Altro	Sviluppo di progetti e prova al calcolatore						

Multimedia Information Systems

TITOLO INSEGNAMENTO IN INGLESE Multimedia Information Systems

Docenti: Canale unico. Walter Balzano

SSD	CFU		Anno di corso		Sem	estre	Lingua
330	CFU	I II		III	1	Ш	Italiano
INF/01	6		х			х	х

Insegnamenti propedeutici previsti: Basi di dati I

OBIETTIVI FORMATIVI

Il corso tratta i principali modelli e tecniche per la gestione dei dati e dei sistemi informativi multimediali. Particolari riferimenti sono relativi ai meccanismi di storing, ricerca e browsing per contenuto su database multimediali, relazione tra database multimediali ed il Web. Particolare attenzione è rivolta a sistemi di localizzazione quali GPS, Fingerprinting ed INS.

CONTENUTI

Il corso è suddiviso in due parti. Prima parte: definizioni e classificazioni dei Media e dei Multimedia. Gestione di dati multimediali audio/video, dalla digitalizzazione alla consultazione degli stessi con particolari riferimenti ai concetti di Storing, Digital Signal Processing, Compressione e Streaming. Seconda parte: Sistemi Multimediali Digitali, Distribuiti ed Interattivi. Valutazioni di complessità, controllo ed adattamento. Presentazione ed interfacce utente. Cenni ai Sistemi Informativi Multimediali con riferimento alla relazione tra Database multimediali ed il Web. Sistemi di Localizzazione, GPS, Fingerprinting ed Inertial Measurement System.

MODALITÀ DIDATTICHE

Lezioni frontali. Esercitazioni.				
MODALITÀ DI ESAME				
L'esame si articola in prova	Scritta e orale	Solo scritta	Solo orale	х
	·			1
In caso di prova scritta i quesiti sono	A risposta multipla	A risposta libera	Esercizi numerici	
Altro				